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Abstract:

An attempt was made in this paper to explore how catchment’s states along with optimization characteristics

affect model behaviour. The Xin’ anjiang model was calibrated under daily forecast mode by using various hypothetical initial

conditions of the catchment with the SCE-UA optimization algorithm. It was found that initial conditions of the catchment

viz-a-viz optimization characteristics have profound effect on the optimized parameters and to a lesser degree on the model

process parameter responses; the result showed that variable initial conditions do not have significant influence on the total

generated runoff.
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Model calibration is a major aspect of hydrologic
modelling with the underlying goal for generating and
organizing quantitative estimation of information for
water resources planning, design, and operation. More
concisely, the main essence is to estimate rates of
water movement overland, underground, or within
streams; amounts of water stored in the soil, or in
natural water bodies and its transient nature. For the
past several decades, using the primary approach of
transforming rainfall (model input) to streamflow
(model output) through a number of interconnected
mathematical functions (each representing a certain
component of the hydrological cycle), a wide range of
conceptual rainfall-runoff models has been developed.

In the views of Gan, et al.m, one thing is
paramount, and that is, the selection of a model should
address three major issues; one of interest here, within
the context of this discourse, is that “the conceptual
base of the model should capture the major hydrological
processes of the catchment”. This view is considered
highly relevant against the fact that a hydrological
model represents runoff processes in a manner that can
be used to estimate (D How the prototype physical
system would respond to sequences of external stimuli
(usually precipitation) ; @ The frequency distribution
of responses of interest (high or low flows); or @ How
changes to the system would alter the response. The

representation may be a physical model providing
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scaled-down duplication of the prototype system, an
analog model, which uses another physical system that
is more economically constructed but has similar
response characteristics, or a mathematical model that
is programmed for a digital computer”’ .

Though this might be the case, conceptually
realistic models can produce erroneous results if they
are not properly calibrated. Model calibration is either
done manually or by a combination of manual effort and
automatic proceduresB: . This may be done by
assignment of initial values to parameters which are
then optimized entirely by an automatic procedure or by
calibrations done manually. Whether or not a model is
calibrated by either of the two procedures, there is no
certainty of obtaining a unique set of optimal
parameters for a conceptual rainfall-runoff model® .
Reasons adduced for this include calibration data with
limited information, data with measurement errors,
spatial variability of rainfall or catchment properties
poorly represented by point measurements, and also the
fact that CRR models suffer from model structure and
parameter identifiability problems.

Traditionally, “when an automatic calibration
procedure is used, the final model parameters derived
depend primarily on four elements: (D Optimization
algorithm; @ Objective functions; @ Calibration
data; and D Model structure and identifiability of

1 .
"N For obvious reasons, each

model parameters”
element exerts a seeming degree of influence on the
outcome of model calibrations. In view of this, the

focus of this paper is on the effects of a catchment’s
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state and the characteristics of the optimization
algorithm on the model calibration with respect to its

optimized values.

1 Objective

To calibrate a hydrologic model, the hydrologist
must specify values for its “parameters” in such a way
that the model’s behaviour closely matches that of the
real system it represents. In some cases, the
appropriate values for a model parameter can be
determined through direct measurements conducted on
the real system. However, in a great many situations,
the model parameters are conceptual representations of
abstract watershed characteristics and must be
determined through a trial-and-error process which
adjusts the parameter values so that the model response
matches the historical input-output data'®’ .

With this as the background,

objectives of this discourse are to examine the effects of

the cardinal

varying initial conditions of the catchment and

characteristics of the optimization algorithm on

parameter optimized values within the following
underlying areas of interest, to wit:

® [Effect of change in initial state of catchment on
the behaviour of the model;

® Parameter responses under varying iteration
runs;

® Effect of change or variations in random seed
value (RSV), an SCE-UA parameter on the model
behaviour.

The aim here is to ascertain the existence or

non-existence of significant change in catchment
process behaviour viz-a-viz the overall corresponding

parameter response.

2 Test Catchment/Hydrologic Data

For this study, the Misai catchment was used.
The Misai catchment (in Zhejiang province, China) is
located south of the 29°30" latitude and of the 118° 30’
longitude. It has a total of six precipitation measuring
stations identified according as Qixi, Majin, Yanxi,
Daxibian, Huanglinkang, and Misai, respectively (see
Fig.1 and Tab.1). The total area of the catchment
stands at 797 km’ . The area is mountainous with thick
vegetation cover, very fertile with a highly permeable
upper layer soil profile. In addition, the ground water
is high and accounts for about 40% of yearly runoff.

Also worthy of note is that the catchment is located in

an area which is humid with a notable, fairly high

precipitation; yearly average rainfall is about 1 500 to
2 000 mm.

Tab.1 Sub-catchment areas of the Misai basin

Number Name of the sub-catchment Area/knt”
1 Qixi 207.22
2 Majin 162.59
3 Yanxi 130.71
4 Daxibian 131.51
5 Huanglinkang 89.26
6 Misai 75.71

Fig.1 Misai catchment

To calibrate the Xin’ anjiang model for the purpose
of this study, hydrologic data for a period of five water
years, i.e., 1982 to 1986 was used. This includes
precipitation, evaporation, and discharge; all these

constitute the input data for the model under study.

3 Conceptual Model

Over the the study of
rainfall-runoff models has been at the centre stage in
the field of hydrology. In the world of hydrology, the

entire principle is based on imperfect observations in a

years, conceptual

complex and sometimes discontinuous domain'” . The
attendant effect of this is the seeming tremendous range
of information that is required and concomitantly thus
calls for analysis in order to thoroughly appreciate the
inherent characteristics. To address this difficult but
important issue, the whole idea of hydrologic modelling
evolved over time.

In recognition of this end, the Xin’anjiang model
was developed in 1973 by the East China College of
Hydraulic Engineering (now Hohai University) , with
the underlying aim to forecast flows to the Xin’ anjiang
reservoir® . The Xin’ anjiang model has a hierarchical
structure with two distinct conceptual storages (see
Fig.2), tension water and free water; to account for
soil moisture process regime in conjugal relationship
with precipitation, the consequent runoff generation

and separation constituents.
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Fig.2 Flow chart for the Xin’ anjiang model”’

4 Optimization Algorithm

The shuffle complex evolution method (SCE-UA)
of Duan et al."® was used for this study. The basic
reason for this derives from the fact that the SCE
method has been widely applied for calibration of
various conceptual rainfall-runoff models, including

the Sacramento model®®'"2! , the Tank model*"# s

and the Xin’ anjiang model " .

More importantly, it was adopted in view of its
versatility. It is a global optimization method which is
classified as probabilistic because of its capability in
evaluating the objective function at randomly spaced
points in the feasible parameter space. To add, its
versatility is epitomized by its representative nature; it
represents a synthesis of the best features of several
methods. SCE  method
different search strategies including: (D Competitive

@ Controlled random search; @ The
simplex method; and @ Complex shuffling.

Concisely, the combines

evolution;

5 Study Protocol

The study approach is patterned after Ranjit'®' who
did a similar work on four Nepalese catchments namely,
Bagmati basin, Gandaki 1 and 2, and the Tamor basin.
By using the SCE algorithm, attempt was made to
address the stated objectives listed in section 2.

The SCE-UA method includes various algorithmic
parameters; the most important being the number of
complexes whose choice is left at the discretion of the
user and more on the complexity of the problem at
hand. Here, the number of complexes was set to a
default value of 32. In view of the fact that the
objective function plays a crucial role in model
calibration, a balanced aggregate objective function
appendix). More concisely, in

was used (see

realization of the stated objectives, three sets of
abstract initial catchment’s conditions were chosen
purportedly to represent the catchment’s state at
various times and the model was then calibrated using
the 15 parameters with the aim of examining their
responses for each initial condition. In addition to the
above, various iteration runs along with varying random
seed value: RSV (constant random number generation)
were used as characteristics of the optimization
algorithm and the corresponding behaviour of the model
parameters was similarly looked at. The performance
measures used in the analysis were the Nash-Sutcliffe
efficiency (D> ), overall volume error ( Vigg/% ), and
objective function value along with noticeable change
in parameter optimized values for each of the stated

objectives.
6 Discussion

As stated in the preceding sections, statistical
indices selected to evaluate the performance of the
model with respect to the stated objectives of this
discourse are the Nash-Sutcliffe coefficient of efficiency
(Dy), objective function value, percentage volume
error, and more importantly, the behaviour of the
parameters; in this case, existence or non-existence of

change (stability or otherwise) in optimized values.
6.1 Optimizing with varying iteration run

To appreciate the effect of the characteristics of
the optimization algorithm on the response of the model
in terms of its optimized parameter values, several
iteration runs were tried. Iteration runs of 3 000,
4000, 5 000, 6 000, 7 000, 8 000, 9 000, 10 000,
15000, and 20 000 were tried and results and statistics
compared. The initial condition of the catchment as

well as SCE parameters in this case except number of
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iterations are indicated below in Tab.2 and the % 570
. £ 560
accompanying note. % 350
Tab.2 The hypothetical initial condition of catchment § ggg
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Note: Number of complex is 32; random seed value (RSV) is — 87.
For iteration runs of 3 000 and 4 000, there was no
change both in parameter values and process parameter
statistics. The situation is the same between iteration
run of 5000 and 6 000. The implication of this is that
there is some degree of stability in the parameter at
But from 7 000 to 9 000,

staggering fluctuation in both parameter optimized

lower iteration runs.

values, objective function values and process parameter
statistics was observed; this trend was pronounced at
relatively higher iteration runs (see Tab.3).

It was discovered that the situation in the case of
process parameter response was distinctly different.
Interflow runoff (RI) is generated more at lower iteration
runs relatively to other runoff components; for instance,
the 5-year mean RI stands at 320.3 for iteration run of
3 000 (see Tab.4) whereas at 7 000 and 10 000,
surface runoff (RS) and ground water runoff (RG)
respectively attained their peak values. Conversely, in
general, there is an undulating trend in the responses
of these process parameters (see Fig.3, Fig.4, and
Fig.5). To be precise, RS decreases with increase in

iteration run whereas RG, at higher runs is linear and

Tteration run x 10?

Fig.3 Surface runoff (RS) vs. iteration run
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Fig.4 Interflow RI vs. iteration run
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Fig.5 Ground water runoff RG vs. iteration run

marginally constant; but for RI, it is a swinging wave-
like This

instability in parameter responses under this scenario.

behaviour. trend practically connotes

Similarly, further analysis was carried out using
different random seed values (RSV) under the same
initial condition as iteration run (see Tab.5 for

parameter values) .

Tab.3 Results of the calibration

Iteration Function Parameters
run value K ™M B WUM WILM WDM C SM EX CG CI CS KG KI XE
10 000 190.555 1.006 0.014 0.351 16.712 81.219 37.522 0.146 17.392 0.622 0.906 0.512 0.010 0.399 0.174 0.371
15000 189.778 1.057 0.010 0.353 13.389 85.670 43.689 0.096 16.714 0.540 0.903 0.552 0.010 0.383 0.194 0.381
20 000 184.447 1.040 0.010 0.379 13.495 81.874 41.418 0.162 16.364 0.509 0.901 0.551 0.011 0.394 0.215 0.383
Variation/ % 3.21 4.82 NA 7.43 19.88 5.19 14.12 40.74 5.91 18.17 0.55 7.25 9.09 4.01 19.07 3.13
Note: Variation > 10% means considered a significant change; NA means not applicable.
Tab.4 Runoff component’s overall response to varying iteration runs
Process parameters Iteration
(S—year mean value) 3000 5000 7 000 9000 10 000 15 000 20 000
RS 522.5 563.4 564.5 526.2 527.9 520.1 510.0
RI 320.3 189.5 210.5 239.0 185.7 203.4 220.6
RG 312.9 375.0 358.3 359.3 426.8 401.7 405.4
Tab.5 Parameters vs. RSV
Iteration Function Parameters
run value K M B WUM WILM WDM C SM EX CG CI CS KG KI XE
- 67 189.42 1.042 0.010 0.388 12.957 85.153 42.746 0.165 16.279 0.502 0.901 0.561 0.010 0.388 0.221 0.383
- 71 189.44 1.022 0.010 0.381 15.350 85.089 42.227 0.149 16.408 0.508 0.900 0.558 0.101 0.395 0.209 0.383
- 87 184.45 1.040 0.010 0.379 13.495 81.873 41.418 0.162 16.364 0.509 0.901 0.551 0.011 0.394 0.214 0.383

6.2 Variable initial catchment’s state

In the SCE-UA method, initial condition or state

of the catchment is considered as a parameter along
with the initial and parameter range which are to be

supplied before the commencement of the calibration.
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For this case, W: tension water storage; WU: upper
layer tension water storage; WL: lower layer tension
water storage; FR: runoff contributing area factor; S:
free water storage; QS: surface flow; QI: interflow;
QG: ground water flow respectively constitute the state
parameters.

As illustrated in Tab.6, I, II, and [l respectively
represent the initial state of the catchment at various
times while calibration details are given in Tab.7.

Tab.6 Initial state of the catchment

State/mm
Parameters I i M

w 125 65 125
WU 30 10 30
WL 90 30 90
FR 0.1 0.2 0.1

S 1.5 0.1 1.5
Qs 1.5 1 1.5
QI 0.5 2 0.5
QG 10 2 1.0

Note: Details of SCE parameters: number of iteration is 10 000; RSV
is — 87; number of complexes is 32.

Tab.7 Optimized parameter values and statistics for each state

State/mm Variation ~ Variation/
Parameters
1 II ll range %

K 1.073 1.074  1.011 0.063 5.87

™M 0.012  0.011 0.017 NA NA

B 0.385  0.369 0.325 0.060 15.58
WUM 14.966  12.529 17.185 4.660 27.09
WLM 78.844  69.001 63.0469 15.800 20.04
WDM 21.908 22.735 25.034 3.130 12.49

C 0.112  0.136  0.137 0.025 18.25

SM 17.435 15.791 16.473 1.640 9.43
EX 0.710  0.510 0.602 0.200 28.17
CG 0.956  0.950 0.946 0.010 1.05

CI 0.652 0.632 0.649 0.020 3.07

CS 0.105  0.013 0.010 0.095 90.48
KG 0.270  0.336  0.319 0.066 19.64

KI 0.339  0.330 0.304 0.035 10.32

XE 0.334  0.392  0.393 0.009 2.29
Function value 180.52  180.74 180.54 0.22 0.12

Note: variation > 10% : considered significant; variation: max — min.
The optimized values for some of the parameters
show insignificant variation for the different initial
exhibit
responses as a result of the induced change. By varying
the initial conditions, parameters like WUM, WLM,
C, SM, EX, CI, CS, KG, KI, and B are sensitive,

showing discernible change in their optimized values.

conditions whereas others considerable

Similarly, the responses of XE, CI, and K respectively
are insignificant considering the fact that percentage
variation greater than ten is adjudged to be sensitive
in the case of

under this condition. Concisely,

parameter XE, the response is at variance with the

findings of Ranjit[ls] . On the other hand, the behaviour
of IM (impervious area parameter) was not taken into
due consideration in the optimization, for it is a
physical variable and ought to be determined by
physical measurement on the field for a realistic
appreciation of its value.

The objective function value shows some marginal
difference for all the three initial catchment’s state.
Function value for state [ is relatively the lowest in all
thus indicating that the model responded positively well
for this initial condition. Sequel to this, the calibrated
parameter values under this condition are taken to be
the best relatively. The physical implication of this
scenario is simple: that is, there is an equally
corresponding significant response of the parameters
SM, EX, CG, CI, CS, and KI as depicted by their
optimized values culminating in a high mean surface
runoff (see Tab.8). However, this does not reflect in
any great change in the values of the total generated
runoff for the differing state of the catchment. The
overall percentage change of values between the
different states is highly marginal; precisely, the
percentage variation in total generated runoff stands at
2.40% .

Tab.8 Statistics of the calibration analysis

Process parameters State/mm

(5-year mean value) 1 I m
R 1114.61 1124.52 1142.05
RS 504.84 489.25 521.83
RI 339.65 314.67 302.55
RG 270.15 320.60 317.70
Qoss 1149.01 1149.01 1149.01
Qcar 1119.35 1125.25 1142.30

Vigr/ % 3.04 3.52 0.96

D, 0.933 0.932 0.931

On the other hand, though state | has the lowest
objective function value, this effect does not translate
significantly well into a better percentage volume error
(see Tab.8) in the process parameter statistics. Here,
there is a glaring twist though the 5-year mean
cumulated Nash-Sutcliffe efficiency is almost the same.

To demonstrate the effect of variable initial
condition or state of the catchment on the model
response, an attempt was made to critically look at the
specific effect of varying free water storage S on the
overall model responses. As illustrated in Tab.8 and
Fig.6, the 5-year mean runoff produced under differing
free water storages S does not in any way differ so much
but like in the preceding cases, only parameter C
showed meaningful variation and to a lesser degree,
KI. For better these

understanding  of issues
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mentioned, refer to Tab.9. What is of more interest
here is the model overall response in the light of these

varying changes in free water storage condition. From

Fig.6,

existing between the same and the runoff produced is

it could be inferred that the relationship

non-linear, precisely sinusoidal.

Tab.9 Summary of the analysis for variable free water storage S

S Ry K M B WUM WLM  WDM C SM EX CG Cl (o) KG KI XE
0.3 1136.03 1.040 0.010 0.379 13.495 81.874 41.418 0.162 16.364 0.509 0.901 0.551 0.011 0.394 0.215 0.383
0.5 1137.30 1.030 0.010 0.389 14.270 84.187 43.126 0.170 16.759 0.504 0.900 0.539 0.010 0.396 0.198 0.380
0.7 1135.04 1.034 0.010 0.390 14.734 83.100 41.323 0.160 16.923 0.503 0.900 0.532 0.010 0.394 0.198 0.387
1.0 1127.06 1.032 0.010 0.386 14.091 83.621 42.226 0.166 16.843 0.506 0.901 0.528 0.010 0.393 0.204 0.384
1.5 1131.03 1.047 0.010 0.390 13.885 84.524 41.567 0.135 17.067 0.500 0.901 0.546 0.010 0.380 0.194 0.382

Variation/%  0.90 1.62 NA 2.82  8.41 1.68 4.18

20.59 4.12 1.77  0.11 4.17 9.09 4.04 9.77 1.81

Note: SCE parameter details: RSV is — 87; iteration run is 20 000; R,, is S5-year mean runoff; initial condition is the same as in optimization under

varying iteration number.
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Fig.6 Mean cumulated 5-year runoff vs. free water storage S
7 Conclusions

The shuffle (SCE-UA)

optimization algorithm was used for the calibration of

complex  evolution
the Xin’ anjiang model in a daily forecast mode. Based
on the findings of this study, it is succinctly clear to an
that state of the
optimization characteristics do impact greatly on the

extent initial catchment and
parameter responses of a model during calibration
process. It is important to state that though this might
be the case, by and large, initial conditions of the
catchment do not really influence the total generated
runoff much as could be seen in Tab.8. For short time
duration, the effect could be appreciable but the long
time effect is seemingly negligible. More generally, the
objective function should be an indicator of the measure
of the runoff generated but in this case, a balanced
aggregate function was used; placing emphasis on the
whole runoff process rather than runoff volume alone.
In specific terms, the model exhibits a variant
behaviour under variable antecedent catchment’s
conditions; this greatly affirms the need for a proper
assessment of the catchment’s hydrological regime
prior to any model calibration exercise and its
subsequent application. From the results, it could be
inferred that parameters B, C, KG, KI, WUM, WLM
and CS are largely affected by the initial conditions of
the catchment, this conforms to Ranjit[lﬂ; though, in

respect to initial condition, free water storage S
exhibits a non-linear, more or less sinusoidal behaviour
in relation to the generated runoff.

On the other hand, parameters like EX, KI, C

and WUM show some sensitive responses under varying

optimization characteristics; for instance, varying

iteration runs. Similarly too, the results also do
indicate marginal differences in both function values
and optimized parameter values when calibration was
done with different random constant number generation
(RSV). In the global optimization scheme, the search
is usually tied to the numbers of iteration and
complexes as these limit the search space. Thus to a
large extent, the results indicate that the parameter
values obtained under these iteration runs are
conceptually realistic but not adequate in view of global
optimum point.

In totality, the parameters EX, KI, and C seemed
to show appreciable variations under the conditions
considered herein. Thus to enhance the chances for
better results, it is imperative to ascertain correct
initial conditions of the catchment though this might be
a difficult task. This can better be done through more
practical realistic means other than the usual practices
of relying heavily on the modeler’s weight of
experience in the art.

Acknowledgement: FFS:
system (using SCE algorithm) prepared by H.A.P.
Hapurachchi and Li Zhijia, 2001 was

analysis.
Appendix Objective functions

a flood forecasting

used for

Overall volume error:

S WL Qs = Qs ()]
F (0) = | =

>
iz
Overall root mean square error (RMSE) :

n

szi[oobs,i - Qm,t(ﬁﬂz %
Fy(0) = = .
2w

i=1

Average RMSE of peak flow events:
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[2] James L Douglas.

m.

j 1

1 Mp z;w%(oohs,i - Qsim,i)2 ’

F3(6) = ﬁz - mj
pj=1

Al 2
> w

i=1

Average RMSE of low events:

m.
J

1 My 2 wZLI: Qobs.i -
3 i=1
M, L ]Zl < 2
2w
Aggregate objective function:

Fagg(e) = {[g]f]((g)]z + Engz((g)]z +

1

Qum: (D12

Fy(0) =

[e:fs (D) + Laufu(T}
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