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L2, 1)-labeling problem on distance graphs
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Abstract: L(2, 1)-labeling number, A(G(Z, D)), of distance graph G(Z, D) is studied. For general finite
distance set D, it is shown that 2 |D| +2<A(G(Z, D)) < |D|*> +3 | D|. Furthermore, A (G(Z, D)) <8
when D consists of two prime positive odd integers is proved. Finally, a new concept to study the upper

bounds of A (G) for some special D is introduced. For these sets, the upper bound is improved to 7.
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The channel assignment problem is to assign a
channel (nonnegative integer) to each radio transmitter
so that interfering transmitters are assigned channels
whose separation is not in a set of disallowed
separations. Hale''' first formulated this problem as a
graph coloring problem. In 1988, Roberts (in a private
communication to Griggs) introduced a variation of
the channel assignment problem, where “ close”
transmitters must receive different channels and “very
close" transmitters must receive channels that are at
least two channels apart. This problem was formulated
as a graph labeling problem by Griggs, et al."”” To
formulate the problem in graphs, the transmitters are
represented by the vertices of a graph; two vertices
are “very close” if they are adjacent in the graph and
“close” if they are of distance two in the graph. More
precisely, given a graph G with vertex set V and edge
set E, for any u, v eV, let d;, (u, v) denote the
distance between u and v in G. An L(2, 1)-labeling f
is an integer assignment f; V—{0, 1, 2, -} such
that [f(u) -f(v) | =2 if d, (u, v) =1 and
|f(u) —f(v) |=1 if d,(u, v) =2. Elements of the
image of f are called labels. A k-L(2, 1)-labeling is an
L(2, 1)-labeling such that no label is greater than k.
The L(2, 1)-labeling number of G, denoted by A (G),
is the smallest number % such that G has a k-L(2, 1)-
labeling. We shall assume with no loss of generality
that the minimum label of L(2, 1) -labelings of G is 0.

Griggs, et al.”?’ and Yeh"' determined the exact
values of A(P,), A(C,) and A(W,), where P, is a
path on n vertices, C, is a cycle of n vertices, and W,
is an n-wheel obtained from C, by adding a new
vertex adjacent to all vertices in C,. For a tree T with
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maximum degree A=1, Griggs, et al.”” proved that A
(T) is either A +1 or A +2. For a general graph G
with maximum degree A, they proved that A (G) <A’
+2A. This upper bound was improved to A* +2A -3
when G is 3-connected and A ( G) <A* when G is of
diameter two. Griggs, et al. conjectured that A (G) <
A’ in general. Moreover, they proved that the L(2, 1)-
labeling problem is NP-complete for general graphs.
Chang, et al." improved the upper bound A* +2A to
A’ +A. They presented a polynomial time algorithm to
determine A (7T) of a tree T.

To study Griggs and Yeh’s conjecture, the class
of chordal graphs is considered®’. It showed that A
(G) <(A +3)°/4 for any chordal graph G. For a unit
interval graph G, which is a very special chordal
graph, Sakai showed that 2v(G) —-2<A(G) <x(G),
where X ( G) denotes the chromatic number of G.

Aside from the graphs mentioned above, people
have studied many other classes of graphs. These
include complete k-partite graphs, n-cube Q,,
cographs, bipartite graphs, outerplanar and planar
graphs, Cartesian product of complete graphs,
Cartesian product of a cycle and a path, power paths,
i-tree, etc.(see Refs.[2 —4,6 —10]).

Suppose that D is a subset of all positive integers.
The integer distance graph (or simply distance graph)
G (Z, D) with distance set D is the graph with a
vertex set Z (Z is the set of all integers), and two
vertices u and v are adjacent if and only if |u-v| e
D. Integer distance graphs were introduced and
studied by Eggleton, et al''"’. They were motivated by
the famous plane coloring problem: What is the
minimum number of colors necessary to color the
points of the Euclidean plane such that pairs of points
of unit distance are colored differently.

In this paper, we study the L (2, 1)-labeling
number A (G(Z, D)). Furthermore, there have not
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been any reports about L(2, 1)-labeling on distance
graphs so far. For general distance sets, we prove that
AMG(Z,D))<|D|*+3|D| when | D| is finite. For
some special sets D, we also give better upper bounds
of A(G(Z, D)).

1 General Distance Sets

In this section, we focus on the general distance
sets D, where |D| is finite. We shall present both
upper and lower bounds of A(G(Z, D) ).

We introduce some notions first. Suppose D =
ta,,ay, =+, a,f, 0 <a, <a, <+ <a,, let
D’ =1{2a, | 1<i<k{Ulaq ta |1<i<j<kand i+
ji. It is easy to see that |D*|<k*>. We let [0, k]
denote the set {0, 1, -+, kf.

Lemma 17 Let G be a graph with maximum
degree A=2. If G has three vertices of degree A such
that one such vertex is adjacent to the other two, then
A(G)=A +2.

Theorem 1 2[D| +2<A(G(Z, D))< |D|* +
3ID].

Proof The lower bound is obviously true by
lemma 1, so it suffices to show that A(G(Z, D)) <
D> +3 |D|. We define a labeling fof G(Z, D)
recursively as follows. First, f(0) =0. When f(j) is
defined for -i<j<i, let f(i + 1) = min {¢;
|t—x|=2forallxeAdandtgA’}, where A = {f(j) :
—isj<iandi+1 —jeD}j and A" = {f(j): —i<j<i
and i +1 —j e D*}. Then let f( —i—-1) =min {¢;
|t —x|=2forallxeBand:egB'}, where B =1{f(j):
—isj<i+landj+i+1eD}| and B' = {f(j): —i
<j<i+landj+i+1eD’}. fis clearly a proper L
(2, 1)-labeling of G(Z, D). Each vertex i + 1 is
adjacent to at most |D| vertices in [ - i, i], and
there are at most | D* | vertices in [ —i, i], which are
distance 2 away from (¢ + 1). So when it is time to
label  + 1, there are at most 3 |D| + |D*| <3 |D| +
|D \2 numbers to be avoided. There is some label in
[0,3|D]+|D]|*] available for i + 1. Similarly, there
is some label in [0, |D|* +3|D|] available for —:
-1.S0 fisa (|D|*+3|D|)-L(2, 1)-labeling of G
(Z, D).

Corollary 1 For |D|=1,A(G(Z, D)) =4.

Remark Ref.[2] proved that A (P,) =4, for n
=5, where P, denotes a path on n vertices. Since
when |D| = 1, each component of G (Z, D) is
isomorphic to a path on infinite vertices, corollary 1 is
equivalent to the well-known result above. Moreover,
it is worth pointing out that the lower bound in
theorem 1 is sharp. In fact, for each positive integer k,

weset D =1{1, 2, -, k|, then G(Z, D) is an
example where this lower bound is attainable since A
(G, {1,2, -+, k) =2k +2 (see Ref.[8]). On the
other hand, the upper bound may not be sharp when
|D|# 1. For some special D, we may improve the
upper bound. For instance, we consider the case D =
{1,3,5, +,2k-1}.G(Z, D) is a subgraph of G
(Z,D') where D' =1{1,2,3, -+, 2k-1},s0 A(G
(Z,D))<A(G(Z,D") =2(2k-1) +2 =4k, that is
to say A(G(Z, D)) <4|D|<|D|*> +3|D| when
ID|# 1. The upper bound in theorem 1 can be
reduced.

2 Two-Element Distance Sets

In this section, we consider the case when \ D| =
2 and try to improve the upper bound for some special
D.

For the case where D is a set of positive integers
with g = ged (D), each component of G(Z, D) is
isomorphic to G(Z, D'), where D' = {d’: gd' € D}.
So when we study A(G(Z, D)), we may assume that
ged(D) =1. For the case of |D| =2, where D = {a,
b}, a<b, and a, b are relatively prime, so either
they are both odd or they are of opposite parity. In the
following we discuss the former case.

Theorem2 If D={a, b}
relatively prime positive odd integers, then 6 <\ (G
(Z, D)) <8.

Proof A (G(Z, D)) =6 follows from theorem
1. Next we show that A( G(Z, D)) <8. Since ged(a,
b) =1 and both a and b are odd, G(Z, D) contains
no odd cycles. This implies that G (Z, D) is a
bipartite graph. Assume that A and B are two partition

a <b,and a, b are

2

sets. Noting that G is 4-regular. We can get an L(2, 1)-
labeling for G by using the numbers in [ 0,3 ] to label
the vertices in A, and the numbers in [ 5, 8] to label
B. This is feasible since there exist no five vertices in
A (or B), such that any two of them are of distance
two. To the contrary, suppose that there are five
vertices in A(or B), say u, v, w, x, y, such that any
two of them are distance two away from each other.
Without loss of generality, we may assume u <v <w <
x <y, which implies that 0 <v —u <w —u <x —u <y
— u. So either of the following equality constraints
holds:

y-u=2b

x-u=b+a
w—u=2a (1)
v—u=b-a
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y-—u=2b
x—-u=b+a
w-u=b-a (2)
v-—u=2a
From (1), we can deduce y —w =2b —2a and w -
v=3a -b. Since a <b, 2b —2a =2a or b + a, which
means b =2a or 3a. So w —v =a or 0, contradicting
that w and v are of distance two. Similarly, a
contradiction can be reached from (2). Hence the
theorem holds.
In the following we will consider the case where
a, b are of opposite parity. This case is more

complicated. And we only get better upper bounds for

some special D. First we introduce some new
conceptions.
An L(2, 1)-labeling f; Z—1{0, 1, 2, ---}| is

called periodic with period p if f(v) =f(v +p) for all
v e Z. We denote a p-periodic L(2, 1)-labeling by f,.
An L(2, 1)-labeling f,: Z— {0, 1, 2, -} is
called d-consistent (d € N, where N is the set of
positive integers ) if \f(v) -f(v+d) | = 2 and
|f(v) —f(v+2d) | =1 for all v e Z.
An L(2, 1)-labeling f,: Z— {0, 1, 2, -} is
called {d,, d,|-consistent if for all v € Z it satisfies
{ () =f,(v+d,) | =2
() =f,(v+dy) | =2
and
f, () =f,(v+2d,) | =1
\f,(v) =f,(v+2d,) | =1
() =f,(v+d, —dy) | =1
|fp(v) —f,(v+d, +d,) =1
By definition, we can prove the following:
Proposition 1 If f is a periodic d-consistent L
(2, 1)-labeling of G(Z, D) with period p > d, then f,
is also (np +d)-consistent for all n e N.
Proof Since f, is d-consistent, we have
£, (v) =f,(v+d) | =2

and

£ (v) =f,(v+2d) | =1

then

f,(0) =f,(v+np £d) | =

I, (0) =f,(vxd) | =2

(o) =flv+2(mpxd) ]| =

I/, (0) =f,(v£2d) | =1

which completes the proof.

Proposition 2 If f, is a periodic {d,, d, |-
consistent L(2, 1)-labeling of G(Z, D) with period p
>d;, i=1, 2, then f is also {np £d,, mp +d,|-

consistent for all n, m e N.

Proof Since f, is {d,, d,|-consistent, we have

{ S, (v) =f,(v+d)) =2
f,(0) ~f,(v+d,) | =2

and
If,(v) =f,(v+d, —dy) [=1
£ (0) =f,(v+d, +d,) | =1
£,(v) =f,(v+2d,) [ =1
() =f,(v+2d,) | =1
then

f,(0) =f,(v+npxd,) | =
I, (0) =f(vxd,) | =2
f,(v) =f,(v+mp £d,) | =
I, (v) =f,(v£d,) | =2
I, (v) =f,(v+2(np xd,)) | =
() =f,(v£2d,) | =1
I, (v) =f,(v+2(mp £d,)) | =
f,(v) =f,(v£2d,) | =1
f,(v) =f, Lo+ (npxd,) —(mpxd,) ]| =
I, (v) =f,[v£(d, £d,) ] [=1
f,,(v> _fp[”"‘(npidl) +(mpid2):| ‘ =
(o) =f,lvx(d, £d,) ] | =1
which completes the proof.
Remark We can also define {d,, d,, -+, d, |-

n

consistent in the same way and draw a conclusion
similar to the propositions above. Since we focus on
the case when |D | =2, the details are omitted here.

In the following we consider distance sets D =
{x, x +s} with s =1,3,5. In our discussion, a famous
theorem of Frobenius is necessary, so we state it first.

Lemma 2''  Let ¢ and b be two positive
integers such that the greatest common divisor of «a
and b is 1. If ¢ is an integer such that ¢ >ab —a - b
then the equation ¢ = na + mb has at least one solution
with n and m nonnegative integers.

Theorem3 IfD={x, x +s},then 6<<A (D) <
7 if one of the following cases occurs:

1)s=1 and x >38;

2)s=3 and x >39;

3)s=5 and x >38.

Proof Since|D| =2, then A\(D)=2 -2 +2 =6
follows from theorem 1. In the following we show that
the upper bound is true by providing a 7-L(2, 1)-
labeling in all cases.

Case 1  The periodic L (2, 1)-labelings P, =
0123456 and P, = 01234567 are obviously {2, 3 |-
consistent. Since gcd(7, 8) =1 the equation ¢t =7n +
8m has a nonnegative solution (n, m) for all t >7 -
8 -7 -8 =41 by lemma 2.

For such a solution (n, m) we define a periodic
7-L(2, 1)-labeling of the form

P =P Py =P Dl

n m
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It is straightforward to verify that P,P; =
012345601234567 and PP, =012345670123456 are
also {2, 3| -consistent, which implies P, is |t +2, ¢ +
3 | -consistent by proposition 2. If we set ¢ =x +3 then
there exists for all x >38 a 7-L(2, 1)-labeling of the
form P, =P, ,; which is {x, x + 1} -consistent.

Case 2 We use the analogous arguments above
with P, =0246135 and P, =02461357 which are {1,
2| -consistent. And we set t =x +2 to construct a {x,
x +3 | -consistent labeling.

Case 3 We use the same proof as in case 1.

3 Further Research

This paper first proves that A(G(Z, D)) < |D|*
+3|D| when |D]| is finite. We concentrate on the
case when |D| =2. We have shown that the upper
bound of A(G(Z, D)) is 8 when D contains two odd
integers. For some special sets D, we improve the
bound to 7. Moreover, we expect to determine the
exact values of A (G(Z, D)) for these sets. We are
also working on the case of D = {a, b} where a and b

are of opposite parity, we conjecture that the upper
bound of A(G(Z, D)) is 8.
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