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Cycle slip detection approach
based on time-relative positioning theory
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Abstract: An efficient cycle slip detection method is proposed for high precision positioning and navigation
results with global positioning system ( GPS), which is based on the assumption of a high sampling interval,
measurement errors are so small that they can be ignored in the temporal single difference observables. And
ambiguities are ordinarily equal to zero, but could be the number of cycles that have “slipped” if loss-of-lock
has occurred. Therefore, cycle slips are estimated as parameters of time-relative positioning observation
equations. Because the temporal single difference observables are taken at different epochs and different stations
with a single GPS receiver, if time-relative positioning observation equations are linearized as that of
conventional relative positioning, the design matrix will be rank defective. To obtain a stable linearization
scheme, time-relative positioning observation equations are further analyzed, and the concept of virtual
measurement is applied. A sample of data collected on a vehicle test shows that a cycle slip detection approach
based on time-relative positioning theory can detect slips at the value of one cycle. The results also indicate if
two satellites are so near to each other that they have the same equivalent to satellite-receiver geometry, cycle
slip detection will be difficult and may get wrong results. Cycle slips of different satellites also affect detection
by satellite-receiver geometry.

Key words: global positioning system ( GPS); cycle slips; time-relative positioning; satellite-receiver geometry

Cycle slips are discontinuities of an integer number of cycles in the measured (integrated) carrier phase resul-
ting from a temporary loss-of-lock in the carrier tracking loop of a GPS receiver. In this event, the integer counter is
reinitialized which causes a jump in the instantaneous accumulated phase by an integer number of cycles. The detec-
tion and correction of cycle slips are needed if accurate positioning is to be carried out. Cycle slip detection and cor-
rection require the location of the jump and the determination of its size. It can be completely removed once it is
correctly detected and identified.

Slip detection and repair still represent a challenge to carrier phase data processing even after years of re-
search. All methods have the common premise that to detect a slip at least one smooth quantity derived from the ob-
servations must be tested in some manner for discontinuities that may represent cycle slips'"> . The derived quanti-
ties usually consist of linear combinations of the indifferenced or double-differenced L1 and L2 carrier-phase and
possibly pseudorange observations. Examples of combinations useful for kinematic data are the geometry-free phase

[1-4]

(a scaled version which is called the ionospheric phase delay) and wide-lane phase minus narrow-lane pseudo-

range'> "' Kalman filtering is a popular method, especially for kinematic data processing where such filtering is
used in the main processing stage' .

Time-relative positioning is a recently developed method for processing GPS observations. By processing carri-
er phase observations taken at different epochs (and different stations) with a single GPS receiver, relative positio-
ning is then obtained'”’ . Because carrier phase observations are performed with the same receiver, carrier phase am-
biguity is common to the two observation epochs if there is no cycle slip. The ambiguities are ordinarily equal to ze-
ro in the temporal single difference observables, but could be the number of cycles that have “slipped” if loss-of-

lock has occurred. Therefore, the temporal single difference observables can be used to detect cycle slips.
1 Observable Model

The mathematical models for raw carrier phase and pseudo-range observables are
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For the L1 frequency

R, =p+c(dt, -6") +T+1, + MR, + &R, } )
A =p+c(bt,=88) +T =1, + A a, + md, +&d,

For the L2 frequency
R, =p +c(6t,-6t") +T+1I, + MR, + &R, } 2)
A, =p +¢(6t, =6°) +T -1, + \,a, + m, + &,

where the subscripts 1 and 2 denote the GPS signals; ¢ and R are the measured carrier phase and pseudo-range; A is
carrier wavelength; p is the geometric range from receiver to the GPS satellite; ¢ is the vacuum speed of light; 67, —
o is the offsets of the receiver and GPS satellite clocks from GPS Time; a is the ambiguity; 7 and [ are the delays
due to the ionosphere and the troposphere, I, =(A,/A,)°1, =1}, I, =r,, I; M and m represent the effect of multipath;
£ represents the effect of receiver noise. Satellite and receiver hardware delays and other small effects have been ig-
nored as they have negligible effect on data preprocessing.

From the computational point of view, the distance dependent biases have a high temporal correlation. This
means that between two consecutive observation epochs the GPS signals have been affected by almost the same at-
mospheric propagation conditions. Hence, the temporal single difference observables (see Fig. 1) are similarly af-
fected. The temporal single difference observation equation is

Add, =A (1 +k) =N (1) =[p(t+k) —p(D)] +[c(8t,(t+k) =68(t+k)) —c(6t,(1) =6°(1))] +

MAa, - [Tt +K) =11 +[T(t+k) =T +[m, (1 +k) —mp, ()] +[ e, (1 +k) —e, (D] (3)
where Aa, denotes cycle slips. Eq. (3) possesses two specific characteristics that differentiate it from the classical
(between receivers) single-difference equation (see Fig.2). The first characteristic is related to the temporal decor-
relation of GPS errors. This mainly affects the satellite clock error (and to a lesser extent the satellite ephemere-
des), which is not entirely eliminated in temporal single-difference observations because this error significantly va-
ries between two epochs. This is due to combined observations having been taken at two different epochs, i. e. , they
are not taken simultaneously as they are for conventional relative positioning. The second is the elimination of carri-
er phase ambiguity when the temporal single difference is formed!”. Because carrier phase observations are per-
formed with the same receiver, carrier phase ambiguity is common to the two observation epochs if there is no cycle
slip. The cycle slips, Aa,, are ordinarily equal to zero, but could be the number of cycles that have “slipped” if loss-
of-lock has occurred.

A() I\B(+) A1) B(1)

Fig.1 Time-relative positioning Fig.2 Conventional relative positioning

2 Observation Equations Linearization

Regardless of surveying mode (static or kinematic) and baseline length (short, medium or long), the effects of
the temporal single differenced biases and noise (i. e., atmospheric delay, satellite orbit bias, multipath, and receiver
system noise) are more or less below a few centimeters in size as long as the observation sampling interval is rela-
tively short'™ . Therefore, Eq. (3) can be simply expressed as

A (t+k) =X, (1) =[p(t+k) —p(D)] +[c(8t,(t+k) =6 (t +k)) —c(8t,(1) =6(1))] + A, Aq, (4)

If we linearized Eq. (4) at epoch ¢ +k and ¢ as

M (t+k) =X (1) =[e(t+k)ox(t+k) —e ()ox()] +[e,(t+k)éy(t +k) —e (D)by(1)] +
[e(t+k)oz(t+k) —e,(1)8z(1)] +[c(8t,(t+k) =6 (t+k)) —c(8t,(1) —=86£(1))] +A,Aq, (5)
where e, e , e_are the satellite-receiver’s direction cosines, so many unknown parameters are introduced in Eq. (5)
and cause the design matrix rank defective that no stable results can be obtained. Let us consider another lineariza-
tion strategy, where the virtual measurements are introduced (see Fig. 1), i. e. assume the receiver obtains a meas-
urement sent from the satellite at the time ¢ + k while the receiver is located at the site A at the time z.
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Then Eq. (4) is equivalent to
Ay —Ad, =Ad 1 =AD" + A = Ay = (o1 —pi ) + () —pl) +
[c(ot,(t+k) =8°(t+k)) —c(8t,(1) =6°(1))] +A,Aq, (6)
Eq. (6) can be linearized as for the method of the linearization of the classical ( between receivers) single-
difference equation. The remaining processing consists of a standard, epoch-by-epoch, least squares adjustment with
four unknown parameters: the three coordinates of the unknown station with the fourth parameter being the varia-
tion of the receiver clock error between the two epochs.

3 Cycle Slip Detection

The least squares adjustment system is

V=A8X+(l+A4) with power P (7

where A is the vector of cycle slip, then
8X=-N"'U, N=A"PA, U=A"P(l+A) (8)
V=A6X+(I+A) =R(I+A), R=E-A(A"PA)A'P (9)

If no cycle slips exist, i. e., A =0, the observation equations are only affected by random errors. The correc-
tions (residuals) vector V will be very small and its fluctuations will be near to zero. Fig. 3 depicts the behaviour of
the corrections for a sample of data collected on a vehicle test.
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Fig.3 Variation of corrections with no cycle slips. (a) Residuals vector V; (b) Corrections vector X

We simulated cycle slips for this data. These slips were multiplied by —1 or +1 every 30 epochs and added to
the original data. Obviously, a cycle slip of the same values of cycles occurs in all the satellites observations, in oth-
er words, all satellite-receivers’ distances are changed by the same value, these effects will be absorbed in the cor-
rections 6X, and cannot be reflected by the residuals V. As the value of 86X is at the level of 1 to 3 m, only slips are
large enough to be exposed by 8X.

On the other hand, if all the satellites observations are affected by different values of cycle slips, the correc-
tions X will only absorb the part whose effects are the same for every satellite’s observation, the remainder can be
reflected by the residuals V. Fig. 4 shows the behaviour of the corrections, where all satellites’ observations had add-

ed slips with the value changing 1 to 6 cycles.
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Fig.4 Variation of corrections with all the satellites’ observations affected by different value cycle slips. (a) Residuals vector V;

(b) Corrections vector X
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As has been experienced, cycle slips can be calculated accurately by adding the parameters in Eq. (7), if four
satellites’ observations are not affected by cycle slips. In Fig. 5(a) we plotted the residuals computed from simulated
measurements by adding slips (1 cycle) to satellite 31. And Fig.5(b) is the estimation of the slip’s parameter.
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Fig.5 Correction and estimation with the occurrence of cycle slips of one satellite’s observations. (a) Residuals of satellite 31;
(b) Estimation of cycle slips
If the number of unknown parameters is larger than that of L1 phase observations, pseudo-range observables

must be used. As pseudo-range measurements are low accuracy, the system cannot detect small cycle slips. If dual-
frequency observables are available, cycle slips can be calculated accurately by adding the parameters in Eq. (7)
when four satellites observations are not affected by cycle slips. The behavior of the estimation of the slip’s parame-
ter computed from simulated measurements by adding slips (1 cycle) to L1 frequency while L2 measurements are
clear is exactly the same as that in Fig.5(b).

4 Further Discussion on Cycle Slip Detection

In GPS literature, nearly all the methods use the same strategy to detect cycle slips: processing the measure-
ments like Egs. (7) to (9), a smooth test quantity is obtained and the quantity will jump if a cycle slip occurs. Then
one or more satellites’ observations are deleted and the quantity is computed again. The deleted satellites’ observa-
tions are labeled those to be affected by cycle slips if the new quantity’s jump is not over a threshold. In fact, this
strategy has great disadvantages, however, up to now, no literature has mentioned it.

Tab. 1 to Tab.3 are L1 phase observation residuals. They show that the residuals computed from the measure-
ments where all satellites’ observations are affected by the same values of cycle slips are equal to cycle-slip-free
case. It also shows residuals increase when slips value increases. And the effects of cycle slips are not revealed by
residuals, which are adjusted by the matrix R in Eq. (9) and satellite-receiver geometry.

Tab.1 Residuals of a cycle slips of one cycle occuring with the increase of numbers of satellites cycle

Affected satellites Slip value Satellites
31 27 11 02 08 03
No 0. 002 0. 008 -0.001 -0.050 0.042 -0.001
31 -0.236 0.358 -0.09%4 -0.090 -0.102 0. 164
31,27 0. 115 -0.184 0. 047 0. 090 0.011 -0.080
31 to 11 1 0.021 -0.042 0.010 0. 055 -0.029 -0.015
31 to 02 -0.019 0.138 -0.025 -0.536 0.424 0.018
31 to 08 -0.163 0.252 -0. 066 -0.083 -0. 054 0.114
All 0. 002 0. 008 -0.001 -0.050 0.042 -0.001
Tab.2 Residuals of one satellite’s observations affected by the increase of slip value cycle
Slip value Affected satellite Satellites
31 27 11 02 08 03
1 -0.236 0.358 -0.09%4 -0.090 -0.102 0. 164
2 -0.474 0.709 -0.187 -0.131 -0.246 0.329
3 31 -0.712 1. 060 -0.280 -0.172 -0.390 0. 494
6 -1.426 2.112 -0.560 -0.293 -0.822 0. 989

12 -2.853 4.216 -1.119 -0.537 —-1.687 1. 980
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Tab.3 Residuals of five satellites’ observations affected by the increase of slip value cycle
. Affected Satellites
Slip value .
satellites 31 27 11 02 08 03
1 -0.163 0.252 —-0. 066 -0.083 —-0.054 0.114
2 31,27 -0.328 0. 496 -0.131 -0.117 -0. 149 0.228
3 11,02 -0.493 0. 741 -0. 195 -0. 150 -0.245 0.343
6 08 —-0.988 1. 474 -0.390 -0.250 -0.532 0. 686
12 -1.979 2.940 -0.779 —-0.451 —1. 105 1.374

In Fig. 6 we plotted the residuals computed from simulated measurements by adding slips (10 cycles) to satel-
lite 31 and 7 cycles to satellite 27. It shows these two satellites’ slips counteract each other and the time series
cannot be used to detect slips. Tab. 1 also illustrates this case, which has not been discussed in GPS literature.

The first reason why slips counteract each other is that the matrix R is a rank defect matrix, which not only
prevents residuals from revealing slips exactly, but also causes infinite slips vectors A to make V~0. The second is
satellite-receiver geometry. Fig. 7 illustrates the satellite-receiver geometry. It shows that satellite 2 is very near to
satellite 8, which means they have the same equivalent to satellite-receiver geometry, in other words, although there
are six satellites, their functions are equal to five satellites. If satellite 2 or satellite 8 observations are deleted, the re-
siduals will not change greatly, see Tab. 4.

Therefore, satellites 31,27, 11 and 3 are the main satellites in the geometry. If one of them is deleted, although
there are five satellites and the redundancy is one, it is still difficult to use the residuals to analyze whether slips oc-
cur or not, see Tab. 5.
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Fig.6 Slips counteracting each other Fig.7 Satellite-receiver geometry
Tab.4 Residuals resulting from deleting equivalent satellites cycle
Affected Deleted . Satellites
. . Slip value
satellite satellite 31 27 11 02 08 03
-0.091 0. 149 -0.038 -0.085 0. 002 0. 064
11 2 1 -0. 086 0. 123 -0.033 —-0. 064 0.059
8 -0.092 0. 149 -0.038 -0.084 0. 064
-0.464 0.714 -0. 187 -0.227 -0.160 0.323
11 2 5 -0.448 0. 645 -0.173 -0.334 0.310
8 -0.416 0. 676 -0.173 -0.379 0.291
Tab.5 Residuals resulting from deleting main satellites cycle
Affected Deleted . Satellites
. . Slip value
satellite satellite 31 27 11 02 08 03
-0.091 0. 149 -0.038 -0. 085 0. 002 0. 064
31 0.014 -0.002 -0.070 0. 057 0. 001
11 27 1 -0.005 -0.001 0.037 -0.034 0. 003
11 0. 004 0. 004 -0.049 0. 043 -0.002
03 0.001 0.012 -0.002 -0. 066 0. 055
-0. 464 0.714 -0. 187 -0.227 -0.160 0.323
31 0.031 -0.005 -0.148 0.121 0. 001
11 27 5 0. 002 0 -0.011 0.010 -0.001
11 0. 004 0. 004 -0.049 0. 043 —-0.002
03 0. 002 0. 025 -0. 004 -0.133 0.110
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5 Conclusion

The quality of GPS positioning is dependent on a number of factors. For attaining high-precision positioning
results, we need to identify the main error sources impacting on the quality of the observations. In terms of data
processing, cycle slips are the main sources which can deteriorate the quality of the observations and subsequent-
ly, the quality of positioning results. The detection and correction of cycle slips are needed if accurate positioning
is to be carried out. Cycle slip detection and correction require the location of the jump and the determination of
its size. It can be completely removed once it is correctly detected and identified. All the methods have the com-
mon premise that to detect a slip at least one smooth quantity derived from the observations must be tested in
some manner for discontinuities that may represent cycle slips. Once the time series for the derived quantities have
been produced, the cycle slip detection process can be initiated.

In most GPS applications, regardless of surveying modes (static and kinematic) and baseline lengths ( short,
medium and long), the effects of the temporal single differenced biases and noise are more or less below a few
centimetres as long as the observation sampling interval is relatively short. Based on the assumption of a high
sampling interval, the time-relative positioning observation equation is further analyzed, and the concept of virtual
measurement is applied, which results in a stable linearization scheme. A new cycle slip detection approach based
on time-relative positioning theory is studied, and valuable unrecognized knowledge of relation between satellites
geometry and cycle slip detection is obtained.
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