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Abstract: In order to improve the quality of web search, a new
query expansion method by choosing meaningful structure data
from a domain database is proposed. It categories attributes into
three different classes, named as concept attribute, context
attribute and meaningless attribute, according to their semantic
features which are document frequency features and
distinguishing capability features. It also defines the semantic
relevance between two attributes when they have correlations in
the database. Then it proposes trie-bitmap structure and pair
pointer tables to implement efficient algorithms for discovering
attribute semantic feature and detecting their semantic relevances.
By using semantic attributes and their semantic relevances,
expansion words can be generated and embedded into a vector
space model with interpolation parameters. The experiments use
an IMDB movie database and real texts collections to evaluate the
proposed method by comparing its performance with a classical
vector space model. The results show that the proposed method
can improve text search efficiently and also improve both
semantic features and semantic relevances with good separation
capabilities.
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search engine finds relevant texts containing keywords
Aprovided by users based on information search mod-
els'"’. However, these keywords are often insufficient and
imprecise'”’. This problem results in irrelevant texts being
returned and relevant texts being lost. Query expansion"’
improves the descriptive capability of keywords by adding
semantically relevant words to original keywords implicit-
Iy"™ or explicitly”™ . Expansion words are generated by ana-
lyzing their semantic relationships with original keywords.
Traditionally, semantic relationships are stored in three kinds
of sources, such as thesaurus'®, co-occurrence'” and query
logs'™ . Currently, there are some new variations of query ex-

. 9-10 .
pansion methods” ™. Moreover, some literature focuses on
discovering relationships between structure data and
teXt[]]*12]

In this paper, we construct a new source of words’ seman-
tic relationships based on a domain database which has not
been utilized as a semantic relationship provider. We use at-
tribute values and their semantic relationships in structure
data to generate expansion words by defining attributes’ se-
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mantic features and analyzing semantic relevances between
two attributes. And we propose efficient algorithms to dis-
cover attributes’ semantic features and detect their semantic
relevancies between two attributes by sampling and estima-
ting. Then we change the vector space information retrieval
model to embed expansion words.

1 Attribute Semantic Feature and Semantic Rele-
vance

We class attributes into three different categories( concept
attribute, context attribute and meaningless attribute) by ob-
serving the features of sampled attribute values. And we de-
tect and evaluate semantic relationships between two attrib-
utes.

1.1 Attribute semantic feature

We can class an attribute by analyzing its document fre-
quency features and by distinguishing capabilities as shown
in Fig. 1. A concept attribute with low document frequency
and high distinguishing capability contains values represen-
ting domain entities. A context attribute with high document
frequency contains values describing domain entities. A
meaningless attribute with low document frequency and low
distinguishing capability contains values that are not relevant
to the specific domain. For example, in Fig. 2, values of
Moviename represent entities in the movie domain, so
Moviename is a concept attribute. Values of Genre and Play-
date describe movie entities, so Genre and Playdate are con-
text attributes. Values of Plotby ( who adds this movie re-
cord) have no semantic meaning in the movie domain, so
Plotby is a meaningless attribute.
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Fig.1 Three attribute categories

MID Moviename Genre Playdate Plotby
001 Modern Times Comic 1936 Mike
002 Transformers Fiction 2007 James
500 One and two Philosophy 1998 Kate
Concept attribute Context attribute Meaningless
attribute

Fig.2 Movie basic table
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Document frequency'" £, of an attribute value possibly fre-
quent interval (0. 01 <f,<0. 1)and stop word"" interval (f,
>0.1). The predominant frequency interval ( PFI) covers
most f; of the attribute values. An attribute’s document fre-
quency feature F can be described by the expectation of f; in
PFI:

E(F) = ifipi p, =Pr{F =f}; i=12,..t
(1)

where ¢ is the number of f; in PFI. The estimation of F is
F = Li 0 =0 (2)
=20 =

where o, is the observation of f; in the sample’s PFI and ¢’ is
the number of o,.

If an attribute has a high distinguishing capability, appear-
ances and absences of its values are highly dependent on the
text collection’s specific domain. We use a 2 x 2 contingency
table to test its dependence and to estimate its distinguishing
capability. The difference between our method and feature
selection'" is that our method is based on observation of at-
tribute values, which is a set of infrequent words. We evalu-
ate the dependence of attribute A and the specific domain D
by test statistics:

B (0, —E))’

T(D’A) ie;l)js((,]) El:,- (3)
where O, represents the number of texts containing words in
attribute A’s value set and E;; is (N, x M;)/N in which N is
the total number of texts in the domain and other collec-
tions. The distribution of T(D, A) can be estimated by X2
distribution with a freedom of 1. If T(D, A) is more than 1
- quantile of y* distribution, we can reject the hypothesis
that they are independent. The greater T(D, A) is, the high-
er an attribute’s distinguishing capability is.

1.2 Attribute semantic relevance

Two attributes have correlations when they are in the
same table or they are in different tables but joined by for-
eign keys. By analyzing the semantic relevances of the
attributes’ value pairs we can detect the semantic relevances
between two attributes. A value pair set of attributes A and B
isP={(a,b) | Ao B,ae A, be B}, where Ax B repre-
sents that they have relationships in the database and that a,
b are their values. The semantic relevance r of value pair
(a, b) is f,/(f, xf,) where f, represents the number of
texts containing both a and b. Attribute semantic relevance
R is the expectation of » and can be estimated by observed
semantic relevances of sampled value pairs.

1.3 Feature discovery and relevance detection

We propose a Trie-Bitmap and a pair pointer table to dis-
cover attributes’ semantic features and detect their semantic
relevances. We store all the distinct values of the attributes
into trie and mark every value’s terminative node by bitmap
in which every bit corresponding to its appearance is 1 and
its absence is 0 in a given text. In order to find values’ ap-

pearances in the text collection we use the AhoCorasick al-
gorithm'"™ to solve such dictionary exact match problems ef-
ficiently. Then f; of every sampled value is the number of 1s
in its bitmap. We use the pair pointer table to store relation-
ships and pointers of value pairs from two attributes. Co-
occurrences of value pairs can be computed by intersecting
their corresponding bitmaps.

2 Improve Text Search by Using Semantic Attrib-
ute Values

We parse original query keywords to obtain their semantic
meaning and map them into concept or context attributes in
order to obtain their expansion words, then we embed expan-
sion words into the vector space model.

2.1 Parse and map query keywords

A query is decomposed into a terms set in order to cover
the semantic meaning of the query. Terms are generated by
sliding a variable length ( between one and the number of
keywords) window on the keywords’ sequence. Then we
match these terms into concept attributes or context attrib-
utes. The optimal term combination of a query is that the
distance between the two far-most semantic relevant terms is
minimal. If we cannot find an optimal term combination,
user-assisted query expansion'' will be carried out.

2.2 Embed expansion words into vector space model

Expansion words generated are embedded into the classi-
cal vector space model with interpolation parameters:

g =aq+B ) e 4
i=1..lcl
where e, represents semantically relevant words of the term
from the optimal term combination ¢; « and 8 are two inter-
polation constants used to adjust the influences of original
query keywords and expansion words.

3 Evaluation

In the experiments, we use IMDB (700 MB with 20
tables) as the domain database, 1 000 movie texts from the
website New York Times and the Greatest Films, and 1 000
other texts from 20 Newsgroups. Algorithms are implemen-
ted by C ++ and run on a PC(Intel Pentium R4 CPU 2. 40
GHz, 512 MB memory).

Fig. 3 (a) shows the document frequency feature of four
attributes which can be separated into context attributes and
concept or meaningless attributes. Fig. 3(b) shows the distin-
guishing capability of attributes with low document frequen-
cy which can be separated into concept and meaningless
attributes. Fig. 3 (¢) shows semantic relevances between
Moviename and four other attributes. And there are two at-
tributes relevant to it. Moreover, the separation capabilities
of the document frequency feature, distinguishing capability
feature and semantic relevance increase when accompanied
by an increase in the dataset. In Fig. 3, “dname” is the di-
rector name, “aname” is the actor name, “mname” is the
movie name, “myear” is the year the movie is put on and
“byear” is the year the director was born.

We evaluate the proposed query expansion method (PNM
+ EP) by comparing its precision, recall, accuracy, and aver-
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age score with a pivoted normalization model (PNM)'".
The query dataset is made up of insufficient and imprecise
queries. Tab. 1 shows that by using PNM + EP, precision and

recall are improved a lot with a little decrease in accuracy.
An increase in the average score will result in better ranking
of relevant texts.
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5 0.06 DRy 3 M o
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Fig.3 Evaluation results. (a) Document frequency; (b) Distinguishing capability; ( c) Semantic relevance
Tab.1 Performance comparison
Precision/ % Recall/ % Accuracy/ % Average score
PNM PNM + EP PNM PNM + EP PNM PNM + EP PNM PNM + EP
9.97 15.4 40 80 96.13 95.97 2.95 8.34

4 Conclusion

In this paper, we propose a new query expansion method
by using structure data in a domain database to improve text
search. And we define attribute semantic features including
document frequency features and distinguishing capabilities.
We also define semantic relevances between two attributes.
Then we give efficient algorithms to discover semantic fea-
tures and detect semantic relevances. We embed generated
expansion words into a vector space model and evaluate the
performance of the proposed method. However, generated
expansion words can also be embedded into other informa-
tion retrieval models and we leave that for the future work.
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