Journal of Southeast University (English Edition)

Vol. 30, No. 1, pp. 13 - 16

Mar. 2014 ISSN 1003—7985

Optimized SHA-1 hash function implemented on FPGA

Xue Ye

Hu Aiqun

(Research Center of Information Security, Southeast University, Nanjing 211189, China)

Abstract: In order to meet the needs of higher operation speed
and lower energy consumption, an optimized SHA-1 algorithm
is proposed. It combines two methods: loop-unfolding and
pre-processing. In the process, intermediate variables are
introduced in the iterations and pre-calculated, so that the
original single-threading operation can perform in a multi-
threading way. This optimized algorithm exploits parallelism
to shorten the critical path for hash operations. And the cycles
of the original algorithm are reduced from 80 to 41, which
greatly improves the operation speed. Therefore, the shortened
iterations of the optimized design require a smaller amount of
hardware resource, thus achieving a lower energy consumption.
The optimized algorithm is implemented on FPGA (field
programmable gate array). It can achieve a throughput rate of
1.2 Gbit/s with the maximum clock frequency of 91 MHz,
reaching a fair balance between operation speed and
throughput rate. The simulation results show that, compared
with other optimized SHA-1 algorithms, this algorithm
obtains higher operation speed and throughput rate without
compromising the security of the original SHA-1 algorithm.
Key words: SHA-1; hash function; loop unfolding; pre-
processing; FPGA

doi: 10.3969/]. issn. 1003 —7985.2014.01. 003

s critical components in modern cryptology, hash

functions have a wide range of applications in mes-
sage certification and digital signature'"', because they do
not require the processed data to be retrieved. A crypto-
graphic hash function must have the following properties:
pre-image resistance (related to that of one-way func-
tion), second pre-image resistance, collision resistance,
as well as being able to withstand all known types of
cryptanalytic attack.

The SHA-1 algorithm is one of the most popular hash
algorithms. In 2005, researchers found attacks on SHA-
1, suggesting that the algorithm may not be secure
enough for ongoing use. Wang et al. "*’ announced an at-
tack that can find collisions in the full version of SHA-1,
requiring fewer than 2% operations while a brute-force

Received 2013-05-06.

Biographies: Xue Ye (1989—), female, graduate; Hu Aiqun (corre-
sponding author), male, doctor, professor, aghu@ seu. edu. cn.
Foundation items: The Project of Wireless Intelligence Terminal Inspec-
tion Services (No. 6704000084), the Special Program of the National
Development and Reform Committee.

Citation: Xue Ye, Hu Aiqun. Optimized SHA-1 hash function imple-
mented on FPGA[J]. Journal of Southeast University (English Edition),
2014,30(1):13 —16. [doi: 10. 3969/j. issn. 1003 —7985.2014.01.003]

search will require 2* operations. Their analysis is built
upon the original differential attack on SHA-O, the near
collision attack on SHA-0O, the multiblock collision tech-
niques, as well as the message modification techniques
used in the collision search attack on MDS5. They exploit
the following two weaknesses: one is that the file prepro-
cessing step is not complicated enough; the other is that
certain math operations in the first 20 rounds have unex-
pected security problems. Although other data can be
found by Wang’s collision attack, the content of the data
is uncertain, which is most likely to be an unreadable
code. In digital signature, people can identify that the da-
ta is damaged and there will be no loss. Therefore, in
many cases, the SHA-1 algorithm is still secure.

This paper focuses on high-throughput design for the
SHA-1. Techniques such as loop unfolding, pre-process-
ing, multi-input adding based on a carry-save adder and
pipeline have been proposed”” to achieve high through-
put rate, high speed operation, and low cost consump-
tion, but only one or two methods have been applied up
to date. Here, the first two methods are integrated and
implemented on FPGA to obtain optimized results. The
improvement is based on unfolding transformation per-
forming two Hash operations in a cycle. The critical path
of a hash operation is short due to the pre-processing of
the coefficients and the algorithm parallelism.

In this paper, the conventional SHA-1 algorithm is ex-
plained, then the proposed design is presented. After-
wards, the hardware implementation, simulation results,
as well as the performance comparison with other works
are displayed. Finally, conclusions are made concerning
this new design.

1 SHA-1 Algorithm

The SHA-1 algorithm is one of the most popular hash
algorithms. It is designed by the U. S. National Security
Agency and issued as a federal information processing
standard. The input message of the SHA-1 algorithm has
a maximum length of less than 2* bits, which generates a
160-bit message digest.

The conventional SHA-1 structure is shown in Fig. 1.
The required input message of SHA-1 is a multiple of 512
bits, so it is necessary that the original message is pad-
ded. The process of padding is as follows: First, one bit
“1” and then 0 <k <512 bits “0”are appended at the end
of the massage, so that the length of the message (in
bits) is congruent to 448 (mod 512). Afterwards, the

14

Xue Ye and Hu Aiqun

length of the message, in bits, is appended as a 64-bit
big-endian integer. After padding, the input message can
be divided into one or multiple 512-bit blocks. Then,
each block is expanded into 80 32-bit words W,, one 32-
bit word for each round of the SHA-1 processing and each
block goes through 4 rounds of hash operations with each
round consisting of 20 calculation units. The final result
is obtained by adding the performing output with the pre-

vious hash code.

Message(<2%bits)

l

Message padding

} Y

MUX

M, M, - ,M,(512 bits)

Y
SHA-1 operation

HO 3H1 3H2 ’HS 3H4
(initial values)

Adder

Message digest(160 bits)
Fig.1 Conventional SHA-1 structure

The iterative process of the hash operation is shown in
Fig. 2. There are both logical operations and additions in
each round of calculation, and all the calculations are bit-
wise, such as rotations to the left (<) and nonlinear
function f,. The five 32-bit data (A,, B,, C,, D,, E,) are
calculated from the values obtained in the previous cycle
by using the required nonlinear operations. The initial val-
ues of the five 160-bit hash variables H,, H,, H,, H,, H,
are predefined (H, =0x67452301, H, =0xEFCDABS9, H,

| At+1 | Bt+1 | Cr+1 | Dr+1 | Et+I |

Fig.2 Computational mode of hash operation

=0x98BADCFE, H, =0x10325476, H, =0xC3D2EI1F0),
and remain constant throughout the calculations. While at
the beginning of each data block calculation, the values
of the variables A, B, C, D, E are determined by those
hash values. After all the data blocks are computed, the
final hash value is the output digest message.

The 32-bit data word W,(¢ =0, 1, ..., 79) expanding
from the input blocks is as

W M, 0<st<15
o {rotL'(W,_3®W,_8®W,_M®W,_,6) 16<r<79
(1)

The value of the constant K, and the performance of the
nonlinear function f are determined by one of the 80
rounds being executed, which are listed in Tab. 1.

Tab.1 Constant K, and nonlinear function f

Rounds Function K,

0to19 (BAC)@D(BAD) 0x5A827999
20 to 39 B®COD 0x6ED9EBALI
40 to 59 (BAC)®D(BAD)®(CAD) 0x8F1BBCDC
60 to 79 B®C®D 0xCA62C1D6

Notes: /\ represents the bitwise AND operation and @ represents the
bitwise XOR operation.

2 Proposed SHA-1 Structure

The time consumption in the conventional SHA-1 algo-
rithm is determined by the combined delay in each hash
operation. Therefore, the overall consumption can be re-
duced significantly by cutting down the number of pro-
cessing rounds.

The proposed method performs two hash operations in
one cycle. The coefficient pre-computation of hash func-
tion and parallelism are available in two independent hash
operation blocks. The deducted hash operations are as

a, =rtotLl’ {RotL’(a, ,) +1,_,} +
f(a,_,, rotL3°(b,72) ,C,,) +m, ,

b, =rotL’(a, ,) +1,_,

¢, =rotL*(a,_,)

(2)
€, =C_
l,=f(b,c,d) +e,+W, +K,
m,=d, +W, 6 +K,,,

t+1
n, =W

t

+2 + KH—Z

where ¢,, d,,

t

e, are directly derived from a, ,, b,_,,
¢, ,, while a, and b, require the computational result of

a In order to achieve a higher parallelism in hash op-

r-1°
erations and reduce the critical path delay in the hash op-
eration block, new parameters /,, m, and n, are defined
and pre-computed as important addends to represent the
respective computational results of a,_,

The proposed SHA-1 structure is composed of pre-pro-
cessing and post-processing parts, as shown in Fig. 3.

Optimized SHA-1 hash function implemented on FPGA

15

The pre-processing part is responsible for the pre-compu-
tation of the defined terms /,, m, and n,, while the post-
processing part is responsible for the iterative hash opera-
tion using the values from q, to e, as well as the previous
output from the pre-processing part. Because there is no
data dependence between the two processing blocks, it is
possible for the parallel computation.

| a2 | b:-zl Ci2 | d,_, | () | n |

']
[fi — WoKo| w Ki-1 %
REaAC :
£

y OV o+]

| L) | b,_, | Ci2 |
rotL3°| vV [%0
/| g
| o)
rot L | ot + £

|y Lo x|
] '

Fig.3 Optimized SHA-1 architecture

The longest path delay in the two processing blocks ex-
ists in a, and [,, which are two additions and one nonlin-
ear function f.

Consequently, the critical path delay for the hash oper-
ation is the delay of two additions and one nonlinear func-
tion f. An additional cycle is needed to initialize the new
defined terms /,, m, and n, at the beginning, while the
other 40 cycles are required for iterative operation. The
proposed SHA-1 structure requires a total of 41 cycles to
complete the hash operations. It not only reduces the iter-
ative cycles by half, but also dramatically shortens the
critical path delay.

3 Implementations on FPGA

The optimized SHA-1 architecture is implemented on
FPGA EP1S25F1020C5, which is one of the Stratix fami-
lies from Altera.

After successful compiling, an ASCII string text “abcd-
bedecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq
is chosen as an input of the program, and the execution
result, which is a 160-bit hexadecimal string text, is
shown in Fig. 4. Fig.4 also depicts the required 41 clock

17.81 ps 17.97 ps 18.13 ps 18.29 ps

QRS aaERInESiny RN ing RN ipn RS INY

000
1M01[0][0] 0] [0] 0] (0] 0] o]0l (o]0l (0] (0] (0] (o]0l (o] (o] (o
54055E441C3E026EBAAE4AAI FOS1 20ESES4ATOFL
Juli 4]

Fig.4 Program execution result

cycles to complete the whole execution.

The validity of the proposed algorithm is tested using
the SHA-1 checking software HashCalc. As shown in Fig.
5, the testing result is consistent with that of the program.

H| HashcCalc = =

Data Data:
[Text stri v [abedbed

Key Key:

[Text stri v |

ighi jhi ki jll jklmklmnl

[~ HMAC

[~ s [
[~ mo¢ [
¥ SHAL [34983 2441 c3bd2B ebaaed aal £35129554BT0F1
[~ SHAZSE |
[~ SHA384

[~ sHAS12

[~ RIPEMDIGO
[~ PANAMA
[~ TIGER

[~ mn2

[~ ADLER3Z
[~ CRC32

eDonkey/
I ohile I

Caleulate| Close | Help

Fig.5 Testing result

4 Performance Analysis

Comparisons with other SHA-1 designs mainly focus
on four factors: frequency, throughput, the number of
slices and cycles. The greater the number of slices, the
higher the energy consumption of the FPGA. And the
more the number of cycles, the more slowly the program
will run on the same hardware. Tab. 2 shows performance

comparisons with other optimized structures. The
throughput is calculated by
T=p ! x 512 bits

n
where T is the throughput rate; p is the stage of pipeline; f
is the frequency of the system; » is the number of cycles.

Tab.2 Performance comparisons with other optimized structures

Design Frequency/ Number Number Throughput/
MHz of cycles of slices (Gbit - s~!)
Ref. [1] 162 80 854 1.0
Ref. [2] 91 40 4 848 4.7
Ref. [3] 42 24 4258 3.5
Ref. [4] 118 41 2 894 5.9
Proposed design 91 41 2 444 1.2

Ref. [1] uses the original SHA-1 architecture without
modification. Refs. [2] and [3] employ both unfolding
and pipeline with 4 stages, while Ref. [4] combines loop
unfolding, pre-processing and pipelining, but implemen-
ted on a different device (Virtex-2).

Tradeoffs among the four evaluated factors are appar-
ently laid out. Though not having the highest throughput
rate, the proposed design has reached a fair balance
among frequency, the number of slices and cycles.

16 Xue Ye and Hu Aiqun

Steamboat Springs, CO, USA, 2006 354 —359

5 Conclusion [5] Lee EH, Lee J H, Park I H, et al. Implementation of
This paper analyzes a high-speed SHA-1 design. By high-speed SHA-1 architecture [J]. IEICE Electronics

using loop unfolding and pre-processing techniques, the Express, 2009, 6(16) : 1174 ~1179.

original 80 performing cycles are reduced to 41, and the (0] Jung E'G, Han D, Lee J G. Low area and high speed

SHA-1 implementation [C]//SoC Design Conference.
Jeju, Republic of Korea, 2011 365 —367.

[7] Kim J-W, Lee H-U, Won Y. Design for high throughput
SHA-1 hash function on FPGA [C|//Fourth Internation-
al Conference on Ubiquitous and Future Networks.
Phuket, Thailand, 2012 403 —404.

[8] Michail H E, Kakarountas A P, Milidonis A S, et al. A
top-down design methodology for ultrahigh-performance
hashing cores [J]. IEEE Transactions on Dependable

implementations on FPGA show the proposed design
gives the maximum throughput of 1.2 Gbit/s when work-
ing at 91 MHz clock frequency. Compared with other de-
signs, the proposed design reaches a fair balance among
the four evaluation factors without compromising the se-
curity of the original algorithm.

Further research reveals that methods such as pipeline
and multi-input adding based on a carry-save adder'®""

can be used to improve the throughput rate. Our future and Secure Computing, 2009, 6(4) ; 255 —268.
efforts will be concentrated on the comparisons between (9] Jiang L H, Wang Y L, Zhao Q X, et al. Ultra high
different hash algorithms[m , including the comparison of throughput architectures for SHA-1 hash algorithm on FP-
collision rate, execution speed, cracking methods and so GA [C]//Computational Intelligence and Software Engi-
on. Furthermore, we will also focus on the actual appli- neering. Wuhan, China, 2009.
cation scenarios "’ , such as in a specific security system. [10] Nakajima J, Matsui M. Performance analysis and parallel
Ref. implementation of dedicated hash functions[J]. IEICE
eterences Trans Fund Electron Commun Comput Sci, 2003, E86-A
[1] Yiakoumis I I, Papadonikolakis M E, Michail H E, et (1):54-63.
al. Maximizing the hash function of authentication codes [11] Hodjat A, Verbauwhede I. A 21.54 Gbits/s fully pipe-
[J]. IEEE Potentials, 2006, 25(2): 9 —12. lined AES processor on FPGA [C]//Proceedings of the
[2] Wang Xiaoyun, Yin Yiqun Lisa, Yu Hongbo. Finding 12th Annual IEEE Symposium on Field-Programmable
collisions in the full SHA-1[C]//25th Annual Interna- Custom Computing Machines. Napa, CA, USA, 2004 .
tional Cryptology Conference. Santa Barbara, CA, 308 —309.
USA, 2005: 1 —16. [12] Wang Z Q, Cao L S. Implementation and comparison of
[3] Michail H, Goutis C. Holistic methodology for designing two hash algorithms [C]//Fifth International Conference
ultra high-speed SHA-1 hashing cryptographic module in on Digital Object Identifier. Shiyan, China, 2013 721 -
hardware [C]//IEEE International Conference on Elec- 725.
tron Devices and Solid-State Circuits. Hong Kong, Chi- [13] Ratna P, Agung A, Purnamasari P D, et al. QiR (quali-
na, 2008. ty in research), analysis and comparison of MD5 and
[4] Lee Y K, Chan H, Verbauwhede I. Throughput opti- SHA-1 algorithm implementation in Simple-O authentica-
mized SHA-1 architecture using unfolding transformation tion based security system [C]//International Confer-
[C1//IEEE 17th International Conference on Applica- ence on Digital Object Identifier. Yogyakarta, Indonesia,
tion-specific Systems, Architectures and Processors. 2013: 99 —104.

FPGA LI HY—H SHA-1 AL RFEF X
HoL AEE

(AdXFREZELFRL TS, dF 211189)

FEE AT H RGP AR R A RRRANE R, R T — A EALe SHA-1 ok BRI S
FRALEE 2 Fr oy ikAasE A, B E R ARER P IIATE L F, S BT H 2R R AL LAY
B S S RAZWITATIEAT. RAF AT 4E T HF) & RARAF 09 K B35 12 B VA 2R B A MR & 49 80 45 e 3
T 41,5 ik 2B TR G B AT E SR BARLIF AR Y, A f AR T A AL, 3% ik £ FPGA AR 44
LT 69 Boek R Zik 1.2 Ghit/s, B4P9R & 5 3 4 91 MHz, 2 Aek £ 5 wb AP 90 & 75 @ BT T B4F 00 T4 4
ALERKU, 5 A SHA-1 ¢ it fokAnik ALk B R A Hra 2 k2o ks £ R THRS
#49 Book o d P iR R

SR SHA-1; 408 S ik SRR JF FALL 22 ;FPGA

FE 4925 TP30

