|Table of Contents|

[1] Yao Jiannan**, Li Juntao,. Degradation of the Emission Current from the FieldEmitter Caused by Ion Bombardment* [J]. Journal of Southeast University (English Edition), 2002, 18 (4): 326-330. [doi:10.3969/j.issn.1003-7985.2002.04.008]
Copy

Degradation of the Emission Current from the FieldEmitter Caused by Ion Bombardment*()
离子轰击引起的场致发射体发射电流跌落的研究
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
18
Issue:
2002 4
Page:
326-330
Research Field:
Electronic Science and Engineering
Publishing date:
2002-12-30

Info

Title:
Degradation of the Emission Current from the FieldEmitter Caused by Ion Bombardment*
离子轰击引起的场致发射体发射电流跌落的研究
Author(s):
Yao Jiannan** Li Juntao
Department of Electronic Engineering, Southeast University, Nanjing 210096, China
姚建楠 李俊涛
东南大学电子工程系, 南京 210096
Keywords:
field emitter degradation of the emission current ion bombardment
场致发射体 发射电流跌落 离子轰击
PACS:
TN101
DOI:
10.3969/j.issn.1003-7985.2002.04.008
Abstract:
In field emission devices, the emission current sometimes degrades with the time. The mechanism of the current degradation is complicated. In this paper, a program is used to simulate the movement of the electron beam from a field emitter. According to the current distribution and the trajectories of the primary electron beam, it is shown that the residual gas is ionized and the ion pairs are generated. The trajectories of the positive ions are simulated. With the different locations and kinetic energy of ions, the damage of the emitter surface is analysed and the variation of the profile of the field emitter is obtained. Finally, the degradation of the emission current is predicted with different gas pressures and primary electron beam current.
在场致发射器件中, 发射电流通常会随着工作时间的增加而跌落.发射电流跌落的机理较为复杂.本文模拟分析了一次电子从场致发射发射体表面的发射情况.根据一次电子的电流密度分布和运动轨迹, 研究残余气体分子的电离.然后计算正离子在电场中的运动轨迹, 利用半经验模型分析不同能量的正离子对发射体表面的损伤情况, 最后估计出在不同残余气压和一次电流下发射电流的衰减.

References:

[1] Reuss Robert H, Chalamala Babu R. New insights into the degradation of field emission display[A].In: Society Information Display International Symposium Digest of Technical Papers[C].USA: Society for information Display, 2001. 81-83.
[2] Chalamala Babu R, Reuss Robert H. Operation of FEAs in hydrogen and development of thin film metal hydrides for integration into FEDs[A]. In: Society Information Display International Symposium Digest of Technical Papers[C].USA: Society for Information Display, 2001.89-91.
[3] Hawkes P W, Kasper E. Principles of electron optics[M]. London: Academic Press, 1996.
[4] Spindt C A, Brodie I, Humphrey L, et al. Physical properties of thin-film field emission cathode with molybdenum cones[J]. J Appl Phys, 1976, 47(2):5248-5263.
[5] Zalm P C. Energy dependence of the sputtering yield of silicon bombardment with neon, argon, krypton, and xenon ions[J]. J Appl Phys, 1983, 54(5):2660-2666.
[6] Wilson W D, Haggmark L G. Calculation of nuclear stopping, ranges, and straggling in the low-energy region[J]. Physical Review B, 1977, 15(5):2458-2468.

Memo

Memo:
* The project supported by the Foundation of National Defense Science and Technology High Power Microwave Electronic Vacuum Device Key Laboratory(51440040101JW0601).
** Born in 1954, male, associate professor.
Last Update: 2002-12-20