|Table of Contents|

[1] Sun Yu, Chen Jin, Sun Guoxiong, et al. Variation of the second-phase morphology and its influenceon fracture behavior of Al-Si alloy [J]. Journal of Southeast University (English Edition), 2004, 20 (1): 53-58. [doi:10.3969/j.issn.1003-7985.2004.01.011]
Copy

Variation of the second-phase morphology and its influenceon fracture behavior of Al-Si alloy()
Al-Si合金第二相形貌变化及其对断裂行为的影响
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
20
Issue:
2004 1
Page:
53-58
Research Field:
Materials Sciences and Engineering
Publishing date:
2004-03-30

Info

Title:
Variation of the second-phase morphology and its influenceon fracture behavior of Al-Si alloy
Al-Si合金第二相形貌变化及其对断裂行为的影响
Author(s):
Sun Yu1, 2, Chen Jin1, Sun Guoxiong1
1Department of Materials Science and Engineering, Southeast University, Nanjing 210096, China
2Department of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224002, China
孙瑜1, 2, 陈晋1, 孙国雄1
1东南大学材料科学与工程系, 南京 210096; 2盐城工学院材料科学与工程系, 盐城 224002
Keywords:
Al-Si alloy variation of Si phase mechanical properties fracture behavior
Al-Si合金 硅相演变 力学性能 断裂行为
PACS:
TG146.2+1;TG146.4+5
DOI:
10.3969/j.issn.1003-7985.2004.01.011
Abstract:
Using an optical microscope and scanning electron microscope(SEM), the variation of eutectic Si morphology of Al-Si alloy in solution treatment was observed to study its influence on mechanical properties and fracture behavior. The results show that eutectic Si undergoes stubbing, necking, fragmentation, and growth in the initial stage(250 min); in the middle solution stage(250 to 400 min), the eutectic Si morphology has no significant change, only the degree of spheroidizing becomes higher; after 600 min, the growth of eutectic Si is a coarsening process controlled by diffusion and follows the Liftshitz-Slyozov-Wangner(LSW)model, and the eutectic Si morphology deteriorates due to the occurrence of facets and lap. Based on the quantitative measure and regression analysis, the eutectic Si morphology has a remarkable influence on mechanical properties and fracture behavior.
用光学显微镜和扫描电镜(SEM)观察Al-Si合金中硅相形貌在固溶过程中的变化, 并研究了此变化对合金力学性能和断裂行为的影响.结果表明: 固溶初期(250 min), 硅相发生缩颈、钝化、溶断并伴随长大; 在固溶中期(250~400 min), 其形貌没有发生显著变化, 仅球化程度更高; 600 min后, 硅相的长大是受扩散控制的粗化过程, 且符合LSW粗化模型; 同时由于出现棱角小面及搭接特征使硅相形貌有所恶化.定量金相测量及回归分析说明硅相的形貌对合金的力学性能和断裂行为有显著影响.

References:

[1] Xiong Y C, Liu B C. Review and prospect of cast aluminum alloy [J]. Special Casting & Nonferrous Alloys, 1998(4): 1-4.
[2] Ravi M, Pillai U T S, Pai B C, et al. A study of the influence of mischmetal additions to Al-7Si-0.3Mg alloy [J]. Metall Mater Trans, 1996, 27A(5): 1283-1292.
[3] Liao H C. Investigation on microstructure refinement and mechanical properties of near-eutectic Al-Si alloys [D]. Nanjing: Department of Mechanical Engineering, Southeast University, 2000.(in Chinese)
[4] Mondolfo L F. Aluminum alloys: microstructure and properties [M]. Translated by Wang Z T, et al. Beijing: Metallurgy Industry Press, 1988. 316-317.(in Chinese)
[5] Lebyodk M, Deschamps A, Brechet Y. Influence of second-phase morphology and topology on mechanical and fracture properties of Al-Si alloys [J]. Mater Sci Eng, 1997, A234-236: 481-484.
[6] Meyers C W, Saigal A, Berry J T. Fracture related properties of aluminum A357-T6 cast alloy and their interrelation with microstructure [J]. AFS Trans, 1983, 91: 281-288.
[7] Wang Q G, Caceres C H. The fracture mode in Al-Si-Mg casting alloy [J]. Mater Sci Eng, 1998, A241: 72-82.
[8] Caceres C H, Davidson C J, Griffiths J R. The deformation and fracture behaviour of an Al-Si-Mg casting alloy [J]. Mater Sci Eng, 1995, A27: 171-179.
[9] Yeh Jien-Wei, Liu Wenpin. The cracking mechanism of silicon particles in an A357 aluminum alloy [J]. Metall Trans, 1996, 27(11): 3558-3568.
[10] Mahmoud F, Hafiz, Toshiro Kobayashi. A study on the microstructure-fracture behavior relation in Ai-Si casting alloys [J]. Scripta Metallurgica, 1994, 30(4): 475-480.
[11] Lu Shu-zu, Hellawll A. The mechanism of silicon modification in aluminum silicon alloys: impurity induced twinning [J]. Metall Trans, 1987, 18A(10): 1721-1733.
[12] Lu Shuzu, Hellawll A. Growth mechanisms of silicon in Al-Si alloy [J]. J Crystal Growth, 1985, 73(2): 316-318.
[13] Pekguryuz M O, Gruzleski J E. Conditions for strontium master alloy additions to A356 melts [J]. AFS Trans, 1988, 96: 55-64.
[14] Shamsuzzoha M, Hogan L M, Berry J T. Effects of modifying agents on crystallography and growth of silicon phase in Al-Si alloys [J]. AFS Trans, 1993, 102: 999-1004.
[15] Meyers C W. Solution heat treatment effects in A357 alloys [J]. AFS Trans, 1985, 93: 741-750.
[16] Shivkumar S, Ricci S, Apelian D. Influence of solution parameters and simplified supersaturation treatments on tensile properties of A356 alloys [J]. AFS Trans, 1990, 98: 913-922.
[17] Shivkomar S, Ricci S, Steenhoff D, et al. An experimental study to optimize the treatment of A356 alloys [J]. AFS Trans, 1989, 97: 791-810.
[18] Apelian D, Shivkumar S. Fundamental aspect of heat treatment of cast Al-Si-Mg alloy [J]. AFS Trans, 1990, 98: 727-742.
[19] Pan E N, Hu J F, Fan C C. Solution-treatment conditions for optimal tensile properties in A357 alloy [J]. AFS Trans, 1996, 104: 1119-1132.
[20] Castleman K R C, Kenneth R. Digital image processing [M]. Translated by Zhu Z G, et al. Beijing: Electron Industry Press, 1998. 247-428.(in Chinese)
[21] Zhu P Y, Liu O Y, Hou T X. Spheroidization of eutectic silicon in Al-Si alloys [J]. AFS Trans, 1985, 93: 609-914.
[22] Verhecen J D. Fundamentals of physical metal ̄lurgy [M]. Translatedby Lu G X, et al. Shanghai: Shanghai Science and Technology Press, 1980. 239-241.(in Chinese)

Memo

Memo:
Biographies: Sun Yu(1963—), male, graduate, associate professor; Sun Guoxiong(corresponding author), male, professor, gxsun@seu.edu.cn.
Last Update: 2004-03-20