[1] Pan Mingjen. Comparison of actuator properties for piezoelectric and electrostrictive materials [A]. In: Proceedings of SPIE[C], 2000, 3992. 80-89.
[2] Sugawara Yutaka, Onitsuka Katsuhiko, Yoshikawa Shoko, et al. Metal-ceramic composite actuators [J]. J Am Ceram Soc, 1992, 75(4): 996-998.
[3] Haertling G H. Chemically reduced PLZT ceramics for ultra-high displacement actuators [J]. Ferroelectrics, 1994, 154: 101-106.
[4] Hooker M W. Properties and performance of RAINBOW piezoelectric actuator stacks [A]. In: Proceedings of SPIE[C]. 1997, 3044: 413-420.
[5] Elissalde Catherine. Structural-property relations in a reduced and internally biased oxide wafer actuator material [J]. J Am Ceram Soc, 1996, 79(8): 2041-2048.
[6] Pan W Y, Daam C Q, Zhang Q M, et al. Large displacement transducers based on electric field forced phase transitions in the tetragonal(Pb0. 97La0. 02)(Ti, Zr, Sn)O3 family of ceramics [J]. J Appl Phys, 1989, 66(12): 953-958.
[7] Shen Xing. Actuator of large displacement RAINBOW ceramics [J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2001, 18(2): 182-187.
[8] Haertling G H. RAINBOW ceramics—a new type of ultra-high displacement actuator [J]. Am Ceram Soc Bull, 1994, 73(1): 93-96.
[9] Wang Qingming, Cross L E. Analysis of high temperature reduction processing of RAINBOW actuator [J]. Mater Chem Phys, 1999, 58: 20-25.
[10] Dausch D E. Asymmetric 90 domain switching in RAINBOW actuators [J]. Ferroelectrics, 1998(210): 31-45.