|Table of Contents|

[1] Yu Haitao,. Hybrid FEM-BEM for simulation of electromagnetic response [J]. Journal of Southeast University (English Edition), 2004, 20 (3): 303-308. [doi:10.3969/j.issn.1003-7985.2004.03.008]
Copy

Hybrid FEM-BEM for simulation of electromagnetic response()
有限元-边界元法计算电磁响应
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
20
Issue:
2004 3
Page:
303-308
Research Field:
Electrical Engineering
Publishing date:
2004-09-30

Info

Title:
Hybrid FEM-BEM for simulation of electromagnetic response
有限元-边界元法计算电磁响应
Author(s):
Yu Haitao
Department of Electrical Engineering, Southeast University, Nanjing 210096, China
余海涛
东南大学电气工程系, 南京 210096
Keywords:
hybrid FEM-BEM underground unexplored ordnance electromagnetic response
有限元-边界元混合方法 地下军事目标 电磁响应
PACS:
TM154
DOI:
10.3969/j.issn.1003-7985.2004.03.008
Abstract:
A finite element method with boundary element method(FEM-BEM)is presented for computing electromagnetic induction. The features of an edge element method including the volume and surface edge element method are investigated in depth. Surface basis functions of edge elements to an arbitrary shape of target are derived according to the geometrical property of basis functions and applied to discretize the surface integral equation for 3-D general targets. The proposed model is presented to compute resonant frequencies and surface current of underground unexplored ordnance(UXO), and then the electromagnetic responses of single target with different frequencies and positions of sensor are simulated and results are validated by experiments.
提出了用有限元-边界元法计算三维电磁场感应问题. 首先阐述了棱边单元法的基本性质, 并且根据基函数的几何平面特性推导出对于任意位置面的表面棱边单元法基本公式, 然后用棱边单元法离散数学模型. 用此方法模拟地下金属军事目标的电磁响应, 计算了目标的最低谐振频率及表面电流密度, 和单一目标的频率特性及位移特性, 计算结果和实验结果一致, 因此这种数值方法对计算三维电磁场问题行之有效.

References:

[1] Balanis Constantine A. Advanced engineering electromagnetics [M]. New York: Wiley, 1989.
[2] Carin L, Yu H T. On the wide-band EMI response of a rotationally symmetric permeable and conducting target [J]. IEEE Transactions on Geoscience & Remote Sensing, 2001, 39(6): 1206-1213.
[3] Glisson A W, Kajfez D, James J. Evaluation of modes in dielectric resonators using a surface integral equation formulation [J]. IEEE Transactions on Microwave Theory and Techniques, 1983, 31(12): 1023-1029.
[4] Lu Yilong, Fernandez F Anibal. An efficient finite element solution of inhomogeneous anisotropic and lossy dielectric waveguides [J]. IEEE Transactions on Microwave Theory and Techniques, 1993, 41(6): 1215-1223.
[5] Yuan X, Lynch D R, Strohbehm J W. Coupling of finite element and moment methods for electromagnetic scattering from inhomogeneous objects [J]. IEEE Trans Antennas Propagat, 1990, 38(3): 386-393.
[6] Andersen L S, Volakis J L. Development of application of novel class of hierarchical tangential vector finite elements for electromagnetics [J]. IEEE Trans Antennas Propagat, 1999, 47(3): 112-120.
[7] Pichon Lionel. Comparison between tangentially continuous vector finite elements for eigenvalue problems in 3-D cavities [J]. IEEE Transactions on Magnetics, 1996, 33(3): 902-905.
[8] Wolfe C T, Navsariwala U, Gedney Stephen D. A parallel finite-element tearing and interconnecting algorithm for solution of the vector wave equation with PML absorbing medium [J]. IEEE Trans Antennas Propagat, 2000, 48(2): 278-283.
[9] Wakao S, Onuki T. Electromagnetic field computations by the hybrid FE-BE method using edge elements [J]. IEEE Transactions on Magnetics, 1992, 29(2): 1487-1490.
[10] Rucker W M, Richter K R. A BEM code for 3-D eddy current calculations [J]. IEEE Transactions on Magnetics, 1989, 26(2): 462-465.
[11] Nedelec J C. Mixed finite element in R3[J]. Numer Math, 1980, 35(2): 315-341.
[12] Bossavit A, Mayergoyz I D. Edge elements for scattering problems [J]. IEEE Transactions on Magnetics, 1989, 25(4): 2816-2821.

Memo

Memo:
Biography: Yu Haitao(1965—), male, doctor, professor, htyu@seu.edu.cn.
Last Update: 2004-09-20