|Table of Contents|

[1] Chen Jiufa,. Comprehensive approach to predicting the circulation composition of zeotropic refrigerants [J]. Journal of Southeast University (English Edition), 2004, 20 (3): 315-318. [doi:10.3969/j.issn.1003-7985.2004.03.010]
Copy

Comprehensive approach to predicting the circulation composition of zeotropic refrigerants()
计算非共沸制冷剂循环浓度的有效方法
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
20
Issue:
2004 3
Page:
315-318
Research Field:
Energy and Power Engineering
Publishing date:
2004-09-30

Info

Title:
Comprehensive approach to predicting the circulation composition of zeotropic refrigerants
计算非共沸制冷剂循环浓度的有效方法
Author(s):
Chen Jiufa
Department of Power Engineering, Southeast University, Nanjing 210096, China
陈九法
东南大学动力工程系, 南京 210096
Keywords:
zeotropic refrigerant composition shift circulation composition
非共沸制冷剂 组分迁移 循环浓度
PACS:
TB61
DOI:
10.3969/j.issn.1003-7985.2004.03.010
Abstract:
The problem of composition shift in zeotropic fluid circulation, which is encountered in modern air conditioning and refrigeration systems, is studied. It reveals that the composition shift phenomena is contributed by fractionation related to four mechanisms. This paper concentrates on the modeling of component fractionation in heat exchangers. Element approach is employed, and the amount of each component holdup is calculated element by element with a proper void fraction model. The circulation concentration is determined from the refrigerant differential holdup in heat exchangers. Simulations have been carried out to prove the validity. The results can improve the reliability and efficiency in zeotropic refrigerant applications.
研究了现代空调和制冷系统中非共沸制冷剂发生的组分迁移问题. 研究发现, 组分迁移现象的4种引发机理都与混合工质的分馏有关. 本文模拟了工质在换热器中的分馏滞流. 将换热器分解成若干微元, 选用恰当的空泡数学模型, 计算各组分在换热器中的滞留量. 系统的循环浓度根据换热器中制冷剂的分馏滞留程度来计算. 通过模拟研究, 证明了模型的可靠性. 该研究结果可以应用于提高非共沸制冷剂在制冷设备应用中的可靠性和效率.

References:

[1]Johansson A, Lundqvist P. A method to estimate the circulated composition in refrigeration and heat pump systems using zeotropic refrigerant mixtures [J]. International Journal of Refrigeration, 2001, 24(8): 798-808.
[2]Rajapaksha L, Suen K O. Influence of reversing methods on the performance of a reversible water-to-water heat pump [J]. Applied Thermal Engineering, 2003, 23(1): 49-64.
[3]Castle T P, Richardson R N, Ritter T J. Thermostatic valve control using a non-azeotropic refrigerant, isobutane/propane mixture [J]. International Journal of Refrigeration, 1999, 22(4): 313-318.
[4]McMullan J T, Hewitt N J, McNerlin M G, et al. Component separation in refrigerant equipment using HFC mixtures [J]. Fluid Phase Equilibria, 2000, 174(1,2): 133-141.
[5]Judge J, Radermacher R. A transient and steady state study of pure and mixed refrigerants in a residential heat pump [R]. USA, EPA/600/SR-96/129, 1996.
[6]Huphmark G A. Holdup in gas-liquid flow [J]. Chemical Engineering Progress, 1962, 58(4): 6265.
[7]Youbi-Idrissi M, Bonjour J, Marvillet C, et al. Impact of refrigerant-oil solubility on an evaporator performances working with R-407C [J]. International Journal of Refrigeration, 2003, 26(3): 284-292.

Memo

Memo:
Biography: Chen Jiufa(1959—), male, PhD, professor, j_chen99@fescomail.net.
Last Update: 2004-09-20