[1] Fredlund D G, Xing A. Equations for the soil-water characteristic curve [J]. Can Geotech J, 1994, 31(3): 521-532.
[2] Holmstrom L. Using additive noise in back-propagation training [J]. IEEE Trans Neural Network, 1992, 3(1): 35-43.
[3] Rojas E. Modeling the soil-water characteristic curve during wetting and drying cycles[A]. In: Proceedings of the 3rd International Conference on Unsaturated Soils[C]. Receife, Brazil, 2002. 215-220.
[4] Gerscovich D M S, Sayao A S F J. Evaluation of the soil-water characteristic curve equations for soils from Brazil [A]. In: Proceedings of the 3rd International Conference on Unsaturated Soils [C]. Receife, Brazil, 2002. 295-300.
[5] Kassif G, Shalom A B. Experimental relationship between swell pressure and suction [J]. Geotechnique, 1971, 21(2): 249-255.
[6] Vanapalli S K, Fredlund D G, Pufahl D E, et al. Model for the prediction of shear strength with respect to soil suction [J]. Can Geotech J, 1996, 33(3): 379-392.
[7] Vanapalli S K, Pufahl D E, Fredlund D G. The effect of stress on the soil-water characteristic behavior of a compacted sandy-clay till[A]. In: 51st Canadian Geotechnical Conference[C]. Edmonton, 1998. 81-86.
[8] Parker D B. Learning logic [R]. Stanford, California: Stanford University, 1982.
[9] Rummelhart D E, Hinton G E, Williams R J. Learning internal representations by error propagation [A]. In: Feldman J A, Hayes P J, Rummelhart D E, eds. Parallel Distributed Processing: Expirations in the Microstructure of Cognition—Volume 1: Foundations [C]. Cambridge, Massachusetts: MIT Press, 1986. 318-362.
[10] Rich E. Artificial intelligence[M]. New York: McGraw-Hill Book Co., 1983. 436.
[11] Winston P H. Artificial intelligence[M]. Massachusetts: Addison-Wesley, 1984. 524.
[12] Stone G O. An analysis rule and the learning of statistical associations[A]. In: Feldman J A, Hayes P J, Rummelhart D E, eds. Parallel Distributed Processing: Expirations in the Microstructure of Cognition—Volume 1: Foundations[C]. Cambridge, Massachusetts: MIT Press, 1986. 444-459.