|Table of Contents|

[1] Wang Li, Sun Yangshan, Fan Quan, Xue Feng, et al. Tensile and wear properties of TiC reinforced420 stainless steel fabricated by in situ synthesis [J]. Journal of Southeast University (English Edition), 2004, 20 (4): 486-491. [doi:10.3969/j.issn.1003-7985.2004.04.019]
Copy

Tensile and wear properties of TiC reinforced420 stainless steel fabricated by in situ synthesis()
原位合成TiC增强420不锈钢的 力学性能和抗磨损性能
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
20
Issue:
2004 4
Page:
486-491
Research Field:
Materials Sciences and Engineering
Publishing date:
2004-12-30

Info

Title:
Tensile and wear properties of TiC reinforced420 stainless steel fabricated by in situ synthesis
原位合成TiC增强420不锈钢的 力学性能和抗磨损性能
Author(s):
Wang Li Sun Yangshan Fan Quan Xue Feng Duan Zhichao
Department of Materials Science and Engineering, Southeast University, Nanjing 210096, China
汪黎 孙扬善 樊泉 薛烽 段志超
东南大学材料科学与工程系, 南京 210096
Keywords:
in situ synthesis composite microstructure tensile properties TiC wear resistance
原位合成 复合材料 显微组织 力学性能 TiC 抗磨损性能
PACS:
TB331
DOI:
10.3969/j.issn.1003-7985.2004.04.019
Abstract:
TiC particle reinforced 420 stainless steel matrix composites were fabricated, and the microstructure, tensile properties and wear resistance of the composites were studied. The experimental results indicate that the distribution of TiC particles with size of 5 to 10 μm in diameter is uniform if the volume fraction of TiC is lower than 6%. However, slight agglomeration can be observed when the TiC content exceeds 6%. With the increase of TiC content the tensile and yield strength of the composites prepared increases and reaches the maximum when the volume fraction of TiC increases to 5%. Further increase of TiC content causes reductions of yield and tensile strength. The ductility of the composites shows a monotone decrease with the increase of TiC addition. The introduction of TiC into 420 stainless steel results in significant improvement on wear resistance, which reaches a steady level when the volume fraction of TiC increases to 11% and does not show obvious variation if the TiC content is further increased.
用原位合成方法制备了TiC增强420不锈钢基复合材料, 并研究了复合材料的显微组织、力学性能和抗磨损性能. 实验结果表明, 当复合材料中TiC颗粒体积分数低于6%时, 材料中TiC颗粒分布均匀, 颗粒的尺寸在5~10 μm左右; 但颗粒体积分数大于6%后, 显微组织中出现TiC颗粒的轻微偏聚. 随着TiC体积分数的增加, 材料的抗拉强度和屈服强度先是增高, 当TiC体积分数达到5%时, 强度达最大值. 此后增加TiC体积分数会导致强度的下降. 复合材料的塑性随TiC体积分数的增加呈单调下降的趋势. TiC颗粒的引入使材料的抗磨损性能得到显著改善, 但当TiC体积分数达到11%时, 抗磨损性能接近一个稳定的水平. 继续增加TiC含量, 材料的抗磨损性能不再发生明显变化.

References:

[1] Kara F, Little J A. Sintering behaviour of precursor mullite powders and resultant microstructures[J]. Journal of the European Ceramic Society, 1996, 16(6): 627-635.
[2] Li Chunyu, Wang Zidong, Li Qingchun. Development of metal matrix composites by powder metallurgy [J]. Journal of Materials Engineering, 1993(3): 34-37.(in Chinese)
[3] Li Q F, Loh N L, Hung N P. Casting and HIPping of Al-based metal matrix composites(MMCs)[J]. Journal of Materials Processing Technology, 1995, 48(1-4): 373-378.
[4] Zielinski W, Atnicki W, Barstch M. Non-uniform distribution of plastic strain in duplex steel during TEM in situ deformation [J]. Materials Chemistry and Physics, 2003, 81(2, 3): 476-479.
[5] Teng Jinbing, Sato Kenkichi. In situ observations of fretting wear behavior in PMMA/steel model [J]. Materials and Design, 2004, 25(6): 471-478.
[6] Das K, Bandyopadhyay T K. Effect of form of carbon on the microstructure of in situ synthesized TiC-reinforced iron-based composite [J]. Materials Letters, 2004, 58(12, 13): 1877-1880.
[7] Mei Z, Yan Y W, Cui K. Effect of matrix composition on the microstructure of in situ synthesized TiC particulate reinforced iron-based composites[J]. Materials Letters, 2003, 57(21): 3175-3181.
[8] Femenia M, Pan J, Leygraf C, et al. In situ study of selective dissolution of duplex stainless steel 2205 by electrochemical scanning tunneling microscopy [J]. Corrosion Science, 2001, 43(10): 1939-1951.
[9] Lu Weijie, Zhang Di, Zhang Xiaonong. Microstructural characterization of TiC in in situ synthesized titanium matrix composites prepared by common casting technique [J]. Journal of Alloys and Compounds, 2001, 327(1, 2): 248-252.
[10] Rai V K, Srivastava R, Nath S K. Wear in cast titanium carbide reinforced ferrous composites under dry sliding [J]. Wear, 1999, 231(2): 265-271.
[11] Rai V K, Nath S K, Ray S. Wear behaviour of cast Fe-TiC composites[A]. In: Proc IXth ISME Conference on Mech Eng[C]. India: Ajay Printers and Publishers, 1994. 407-412.
[12] Wang H Y, Jiang Q C, Li X L, et al. In situ synthesis of TiC/Mg composites in molten magnesium [J]. Scripta Materialia, 2003, 48(9): 1349-1354.
[13] Berns Hans, Wewers Birgit. Development of an abrasion resistant steel composite with in situ TiC particles [J]. Wear, 2001, 251(1-12): 1386-1395.
[14] Lu W J, Zhang D, Zhang X N, et al. Microstructure and tensile properties of in situ(TiB+TiC)/Ti6242(TiB ∶TiC=1 ∶1)composites prepared by common casting technique [J]. Materials Science and Engineering A, 2001, 311(1, 2): 142-150.
[15] Jiang W H, Pan W D, Ren Y L, et al. In-situ formation of TiC/Hadfield steel composites [J]. Journal of Materials Science Letters, 1998, 17(18): 1527-1529.
[16] Degnan C C, Shipway P H, Wood J V. Elevated temperature sliding wear behaviour of TiC-reinforced steel matrix composites [J]. Wear, 2001, 251 (1-12):1444-1451.
[17] Li Jionghui, Shi Youfang, Gao Hanwen. Metallographic diagram of steel material[M]. Shanghai: Shanghai Scientific and Technical Publishers, 1981.(in Chinese)
[18] Humphreys F J, Basu A, Djazeb M R, et al. MMCs: processing, microstructure and properties[M]. Riso, Denmark: Riso National Laboratory, 1991. 51.
[19] Pagounis E, Lindroos V K. Processing and properties of particulate reinforced steel matrix composites[J]. Materials Science and Engineering, 1998, A246(1, 2): 221-234.

Memo

Memo:
Biographies: Wang Li(1981—), female, graduate; Sun Yangshan(corresponding author), male, professor, yssun@seu.edu.cn.
Last Update: 2004-12-20