|Table of Contents|

[1] Xu Mai, Shan Xiuming, Xu Baoguo,. Maneuvering target trackingusing threshold interacting multiple model algorithm [J]. Journal of Southeast University (English Edition), 2005, 21 (4): 440-444. [doi:10.3969/j.issn.1003-7985.2005.04.013]
Copy

Maneuvering target trackingusing threshold interacting multiple model algorithm()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
21
Issue:
2005 4
Page:
440-444
Research Field:
Electromagnetic Field and Microwave Technology
Publishing date:
2005-12-30

Info

Title:
Maneuvering target trackingusing threshold interacting multiple model algorithm
Author(s):
Xu Mai1 Shan Xiuming1 Xu Baoguo2
1Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
2School of Communication and Control Engineering, Southern Yangtze University, Wuxi 214036, China
Keywords:
maneuvering target tracking Kalman filter interacting multiple model(IMM) threshold interacting multiple model(TIMM)
PACS:
TN953
DOI:
10.3969/j.issn.1003-7985.2005.04.013
Abstract:
To avoid missing track caused by the target maneuvers in automatic target tracking system, a new maneuvering target tracking technique called threshold interacting multiple model(TIMM)is proposed.This algorithm is based on the interacting multiple model(IMM)method and applies a threshold controller to improve tracking accuracy.It is also applicable to other advanced algorithms of IMM.In this research, we also compare the position and velocity root mean square(RMS)errors of TIMM and IMM algorithms with two different examples.Simulation results show that the TIMM algorithm is superior to the traditional IMM algorithm in estimation accuracy.

References:

[1] Brown R G.Introduction to random signals and applied Kalman filtering [M].New York:Wiley, 1997.10-107.
[2] Chen Y T, Hu A G C, Plant J B.A Kalman filter based tracking scheme with input estimation [J].IEEE Transactions on Aerospace and Electronic Systems, 1979, 15(3):237-244.
[3] Bogler P L.Tracking a maneuvering target using input estimation [J].IEEE Transactions on Aerospace and Electronic Systems, 1987, 23(3):298-310.
[4] Bar-Shalom Y, Birmiwal K.Variable dimension filter for maneuvering target tracking [J].IEEE Transactions on Aerospace and Electronic Systems, 1982, 18(5):621-629.
[5] Ahn B W, Choi J W, Fang T H.A modified variable dimension filter with input estimation for maneuvering target tracking [A].In:Proceeding of the American Control Conference[C].Denver, Colorado, 2003.1266-1271.
[6] Cloutier J R, Lin C F, Yang C.Enhanced variable dimension filter for maneuvering target tracking [J].IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(3):786-797.
[7] Blom H A P, Bar-Shalom Y.The interacting multiple-model algorithm for systems with Markovian switching coefficients [J].IEEE Transactions on Automatic Control, 1987, 33(8):780-783.
[8] Bar-Shalom Y.Tracking a maneuvering target using input estimation versus interacting multiple model algorithm [J].IEEE Transactions on Aerospace and Electronic Systems, 1989, 25(2):296-300.
[9] Atherton D P, Lin H J.Parallel implementation of IMM tracking algorithm using transputers [A].In:IEE Proceeding:Radar, Sonar and Navigation[C].Brest, French, 1994.325-332.
[10] Johnston L A, Krishnamurthy V.An improvement to the interacting multiple model(IMM)algorithm [J].IEEE Transactions on Signal Processing, 2001, 49(12):2909-2923.
[11] Mazor E, Averbuch A Y, Bar-Shalom, et al.Interacting multiple model methods in target tracking:a survey [J].IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(1):103-123.
[12] Duh F B, Lin C T.Tracking a maneuvering target using neural fuzzy network [J].IEEE Transactions on Systems, Man, and Cybernetics, 2004, 34(1):16-33.

Memo

Memo:
Biographies: Xu Mai(1981—), male, graduate, xumai03@mails.tsinghua.edu.cn;Shan Xiuming(corresponding author), male, professor, shanxm@tsinghua.edu.cn.
Last Update: 2005-12-20