|Table of Contents|

[1] Wu Jiansheng, Hu Minjing, Zhou Tong, Weng Jianhong, et al. Support vector machine for prediction of siRNA silencing efficacy [J]. Journal of Southeast University (English Edition), 2006, 22 (4): 501-504. [doi:10.3969/j.issn.1003-7985.2006.04.012]
Copy

Support vector machine for prediction of siRNA silencing efficacy()
基于支持向量机的siRNA降解效率预测
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
22
Issue:
2006 4
Page:
501-504
Research Field:
Biological Science and Medical Engineering
Publishing date:
2006-12-30

Info

Title:
Support vector machine for prediction of siRNA silencing efficacy
基于支持向量机的siRNA降解效率预测
Author(s):
Wu Jiansheng Hu Minjing Zhou Tong Weng Jianhong Jiang Peng Sun Xiao
State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
吴建盛 胡敏菁 周童 翁建洪 江澎 孙啸
东南大学生物电子学国家重点实验室, 南京 210096
Keywords:
short interfering ribonucleic acid(siRNA) support vector machine base-base correlation receive operating characteristic(ROC)curve
siRNA 支持向量机 碱基对关联性 ROC曲线
PACS:
Q52
DOI:
10.3969/j.issn.1003-7985.2006.04.012
Abstract:
In order to assist the design of short interfering ribonucleic acids(siRNA), 573 non-redundant siRNAs were collected from published literatures and the relationship between siRNAs sequences and RNA interference(RNAi)effect is analyzed by a support vector machine(SVM)based algorithm relied on a base-base correlation(BBC)feature. The results show that the proposed algorithm has the highest area under curve(AUC)value(0.73)of the receive operating characteristic(ROC)curve and the greatest r value(0.43)of the Pearson’s correlation coefficient. This indicates that the proposed algorithm is better than the published algorithms on the collected datasets and that more attention should be paid to the base-base correlation information in future siRNA design.
为了辅助siRNA 的设计, 从已发表文献中共收集到573个siRNA的实验数据, 使用基于统计学习理论的支持向量机(SVM)方法, 提取了siRNA序列的碱基对关联性(BBC)特征, 然后使用十倍交叉验证方法, 对siRNA沉默目标基因的效率进行了预测.结果表明, 基于支持向量机, 选用多项式核作为核函数的算法具有最高的AUC 值(0.73, ROC曲线图)和最高的r值(0.43, Pearson相关系数分析), 优于以前基于打分的算法.结果说明, 在以后的siRNA 的设计中应该更多关注碱基之间的关联信息.

References:

[1] Fire A, Xu S, Montgomery M K, et al.Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans [J].Nature, 1998, 391(6669):806-811.
[2] Bernstein E, Caudy A A, Hammond S M, et al.Role for a bidentate ribonuclease in the initiation step of RNA interference [J].Nature, 2001, 409(6818):363-366.
[3] Nykanen A, Haley B, Zamore P.ATP requirements and small interfering RNA structure in the RNA interference pathway [J].Cell, 2001, 107(3):309-321.
[4] Saetrom P, Snove O Jr.A comparison of siRNA efficacy predictors [J].Biochem Biophys Res Commun, 2004, 321(1):247-253.
[5] Amarzguioui M, Prydz H.An algorithm for selection of functional siRNA sequences [J].Biochem Biophys Res Commun, 2004, 316(4):1050-1058.
[6] Reynolds A, Leake D, Boese Q, et al.Rational siRNA design for RNA interference [J].Nature Biotech, 2004, 22(3):326-330.
[7] Ui-Tei K, Naito Y, Takahashi F, et al.Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference [J].Nucleic Acids Res, 2004, 32(3):936-948.
[8] Takasaki S, Kotani S, Konagaya A.An effective method for selecting siRNA target sequences in mammalian cells [J].Cell Cycle, 2004, 3(6):790-795.
[9] Vapnik V N.The nature of statistical learning theory [M].Springer, 1995.
[10] Liu Z H, Jiao D, Sun X.Classifying genomics sequences by sequence feature analysis[J].Genomics Proteomics Bioinformatics, 2005, 3(4):201-205.
[11] Egan J P.Signal detection theory and ROC analysis [M].New York:Academic Press, 1975.
[12] Sætrom P, Snöve O J.A comparison of siRNA efficacy predictors [J].Biochem Biophys Res Commun, 2004, 321(1):247-253.

Memo

Memo:
Biographies: Wu Jiansheng(1979—), male, graduate;Sun Xiao(corresponding author), male, doctor, professor, xsun@seu.edu.cn.
Last Update: 2006-12-20