|Table of Contents|

[1] Xia Dunzhu, Wang Shourong, Zhou Bailing,. Temperature compensation method of silicon microgyroscopebased on BP neural network [J]. Journal of Southeast University (English Edition), 2010, 26 (1): 58-61. [doi:10.3969/j.issn.1003-7985.2010.01012]
Copy

Temperature compensation method of silicon microgyroscopebased on BP neural network()
基于BP神经网络的硅微陀螺仪温度补偿方法
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
26
Issue:
2010 1
Page:
58-61
Research Field:
Instrument Science and Technology
Publishing date:
2010-03-30

Info

Title:
Temperature compensation method of silicon microgyroscopebased on BP neural network
基于BP神经网络的硅微陀螺仪温度补偿方法
Author(s):
Xia Dunzhu Wang Shourong Zhou Bailing
Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology of Ministry of Education, Southeast University, Nanjing 210096, China
夏敦柱 王寿荣 周百令
东南大学微惯性仪表与先进导航技术教育部重点实验室, 南京 210096
Keywords:
silicon microgyroscope temperature characteristic error back propagation neural network temperature compensation
硅微陀螺仪 温度特性 误差反向传播神经网络 温度补偿
PACS:
U666.112
DOI:
10.3969/j.issn.1003-7985.2010.01012
Abstract:
The temperature characteristics of a silicon microgyroscope are studied, and the temperature compensation method of the silicon microgyroscope is proposed. First, an open-loop circuit is adopted to test the entire microgyroscope’s resonant frequency and quality factor variations over temperature, and the zero bias changing trend over temperature is measured via a closed-loop circuit. Then, in order to alleviate the temperature effects on the performance of the microgyroscope, a kind of temperature compensated method based on the error back propagation(BP)neural network is proposed. By the Matlab simulation, the optimal temperature compensation model based on the BP neural network is well trained after four steps, and the objective error of the microgyroscope’s zero bias can achieve 0.001 in full temperature range. By the experiment, the real time operation results of the compensation method demonstrate that the maximum zero bias of the microgyroscope can be decreased from 12.43 to 0.75(°)/s after compensation when the ambient temperature varies from -40 to 80 ℃, which greatly improves the zero bias stability performance of the microgyroscope.
研究了硅微陀螺的温度特性, 提出了硅微陀螺仪的温度补偿方法.首先, 采用开环电路测试了微陀螺仪的谐振频率和品质因素随温度变化的情况, 并采用闭环电路测试了微陀螺整机零偏随温度变化规律. 然后, 为研究降低温度对微陀螺性能的影响, 提出了一种基于误差反向传播(BP)神经网络的温度补偿方法. 通过Matlab仿真, 基于BP神经网络温度补偿的优化模型经过4步就得到很好训练, 并使全温范围内微陀螺零偏的目标误差达到0.001.该补偿方法实时运行试验结果表明, 环境温度在 -40~80 ℃变化过程中, 微陀螺仪的最大零偏经过补偿能从12.43(°)/s 降低到 0.75(°)/s, 从而大大提高了微陀螺仪的零偏稳定性.

References:

[1] Sharma A, Zaman M F, Ayazi F. A 0.2°/hr micro-gyroscope with automatic CMOS mode matching [C]//Proc of the IEEE International Solid-State Circuits Conference. San Francisco, CA, USA, 2007: 386-387.
[2] Kulygin A, Schmid U, Seidel H. Characterization of a novel micromachined gyroscope under varying ambient pressure conditions [J]. Sens Actuators A: Phys, 2008, 145(1): 52-58.
[3] Li Z, Yang Z, Xiao Z. A bulk micromachined vibratory lateral gyroscope fabricated with wafer bonding and deep trench etching [J]. Sens Actuators A: Phys, 2000, 83(1): 24-29.
[4] Ashwin A S. Integrated micromechanical resonant sensor for inertial measurement system [D]. Berkeley, CA, USA: School of Electrical Engineering and Computer Science of University of California at Berkeley, 2002.
[5] Wyatt O D. Mechanical analysis and design of vibratory micromachined gyroscopes [D]. Berkeley, CA, USA: School of Mechanical Engineering of University of California at Berkeley, 2001.
[6] Jason K P H. Modeling and identification of the jet propulsion laboratory vibratory rate microgyroscope [D]. Los Angeles: School of Mechanical Engineering of University of California at Los Angeles, 2002.
[7] Fang Jiancheng, Li Jianli, Sheng Wei. Improved temperature error model of silicon MEMS gyroscope with inside frame driving [J]. J Beijing Univ Aerona Astronaut, 2006, 32(11): 1277-1280.(in Chinese)
[8] Shcheglov K, Evans C, Gutierrez R, et al. Temperature dependent characteristics of the JPL silicon MEMS gyroscope [C]//Proceedings of the IEEE Aerospace Conference. Big Sky, MT, USA, 2000: 403-411.

Memo

Memo:
Biography: Xia Dunzhu(1978—), male, doctor, xiadz-1999@163.com.
Foundation items: The National High Technology Research and Development Program of China(863 Program)(No.2002AA812038), the National Natural Science Foundation of China(No.60974116).
Citation: Xia Dunzhu, Wang Shourong, Zhou Bailing. Temperature compensation method of silicon microgyroscope based on BP neural network[J]. Journal of Southeast University(English Edition), 2010, 26(1): 58-61.
Last Update: 2010-03-20