|Table of Contents|

[1] Chen Ping, Yang Fang, Fang Kun, Gu Aiyuan, et al. A system for evaluationof ultrasound contrast agent’s enhancement effect [J]. Journal of Southeast University (English Edition), 2010, 26 (1): 82-86. [doi:10.3969/j.issn.1003-7985.2010.01017]
Copy

A system for evaluationof ultrasound contrast agent’s enhancement effect()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
26
Issue:
2010 1
Page:
82-86
Research Field:
Biological Science and Medical Engineering
Publishing date:
2010-03-30

Info

Title:
A system for evaluationof ultrasound contrast agent’s enhancement effect
Author(s):
Chen Ping1 Yang Fang1 Fang Kun1 Gu Aiyuan2 Qian Zhuoyu3 Wang Peng4 Gu Ning1
1Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210096, China
2Belson Imaging Technology Co., Ltd., Wuxi 214092, China
3Imaging Science and Technology Laboratory, Southeast Unive
Keywords:
microbubble ultrasound phantom enhancement imaging optimal settings
PACS:
R445.1
DOI:
10.3969/j.issn.1003-7985.2010.01017
Abstract:
A system for in vitro investigation of ultrasound contrast agent’s enhancement effect is presented and evaluated. It includes the digital B-mode ultrasound scanner Belson3000A, the tissue-mimicking ultrasound phantoms and the software which is used for image quantitative analysis. The linear range, optimal settings and repeatability of the system are assessed and explored by scanning the ultrasound phantoms with different reflective intensities. The measurements are performed under an acoustic power from 4.8 to 12.3 mW, the scanner centre frequency is 3.5 MH and the gain setting is 50 dB. Both a self-made surfactant encapsulated microbubble and a commercial ultrasound contrast agent are scanned. The results show that the pixel intensity of ultrasonic images increases with the increase in the sound power, and for the stronger reflective phantoms of more particles, the increasing trend is much more evident. The system is optimal for evaluating the microbubble contrast agents’ enhancement effects. It presents a simple, effective and real-time means for characterizing the enhancement ability of microbubbles.

References:

[1] Voigt J U. Ultrasound molecular imaging [J]. Methods, 2009, 48(2): 92-97.
[2] Stride E, Porter C, Prieto A G, et al. Enhancement of microbubble mediated gene delivery by simultaneous exposure to ultrasonic and magnetic field[J]. Ultrasound in Med and Biol, 2009, 35(5): 861-868.
[3] Tinkov S, Bekeredjian R, Winter G, et al. Microbubbles as ultrasound triggered drug carriers[J]. Journal of Pharmaceutical Sciences, 2009, 98(6): 1935-1961.
[4] Zhao S K, Kruse D E, Ferrara K W, et al. Acoustic response from adherent targeted contrast agents [J]. Journal of the Acoustical Society of America, 2006, 120(6): EL63-EL69.
[5] Tartis M S, Kruse D E, Zheng H R, et al. Dynamic microPET imaging of ultrasound contrast agents and lipid delivery [J]. J Control Release, 2008, 131(3): 160-166.
[6] Yang F, Li Y X, Chen Z P, et al. Superparamagnetic iron oxide nanoparticle-embedded encapsulated microbubbles as dual contrast agents of magnetic resonance and ultrasound imaging [J]. Biomaterials, 2009, 30(23/24): 3882-3890.
[7] Soetanto K, Chan M. Fundamental studies on contrast images from different sized micro bubbles: analytical and experimental studies [J]. Ultrasound in Med and Biol, 2000, 26(1): 81-91.
[8] Sboros V, Moran C M, Anderson T, et al. Evaluation of an experimental system for the in vitro assessment of ultrasonic contrast agents [J]. Ultrasound in Med and Biol, 2000, 26(1): 105-111.
[9] Yu T H, Xiong S H, Mason T J, et al. The use of a microbubble agent to enhance rabbit liver destruction using high intensity focused ultrasound [J]. Ultrasonics Sonochemistry, 2006, 13(2): 143-149.
[10] Zell K, Sperl J I, Vogel M W, et al. Acoustical properties of selected tissue phantom materials for ultrasound imaging[J]. Phys Med Biol, 2007, 52(20): N475-N484.
[11] Surry K J M, Austin H J B, Fenster A, et al. Poly(vinyl alcohol)cryogel phantoms for use in ultrasound and MR imaging[J]. Phys Med Biol, 2004, 49(24): 5529-5546.
[12] Chiarelli P, Lanat A, Carbone M. Acoustic waves in hydrogels: a bi-phasic model for ultrasound tissue-mimicking phantom [J]. Materials Science and Engineering, 2008, 7(36): 1-9.
[13] Caskey C F, Qin S, Dayton P A, et al. Microbubble tunneling in gel phantoms[J]. J Acoust Soc Am, 2009, 125(5): EL183-EL189.
[14] Demitri C, Sannino A, Conversano F, et al. Hydrogel based tissue mimicking phantom for in-vitro ultrasound contrast agents studies [J]. J Biomed Mater Res Part B: Appl Biomater, 2008, 87(2): 338-345.
[15] Landry A, Fenster A. Theoretical and experimental quantification of carotid plaque volume measurements made by three-dimensional ultrasound using test phantoms[J]. American Association of Physicists in Medicine, 2002, 29(10): 2319-2327.
[16] Oeffinger B E, Wheatley M A. Development and characterization of a nano-scale contrast agent [J]. Ultrasonics, 2004, 42(1/2/3/4/5/6/7/8/9): 343-347.
[17] Wheatley M A, Forsberg F, Dube N, et al. Surfactant-stabilized contrast agent on the nanoscale for diagnostic ultrasound imaging[J]. Ultrasound in Med and Biol, 2006, 32(1): 83-93.

Memo

Memo:
Biographies: Chen Ping(1984—), female, graduate; Gu Ning(corresponding author), male, doctor, professor, guning@seu.edu.cn.
Foundation items: The National Basic Research Program of China(973 Program)(No.2006CB933206), the National Natural Science Foundation of China(No.50872021, 60725101).
Citation: Chen Ping, Yang Fang, Fang Kun, et al. A system for evaluation of ultrasound contrast agent’s enhancement effect[J]. Journal of Southeast University(English Edition), 2010, 26(1): 82-86.
Last Update: 2010-03-20