|Table of Contents|

[1] Yang Weibo, Chen Zhenqian, Shi Mingheng, et al. Alternate operation characteristicsof a solar-ground source heat pump system [J]. Journal of Southeast University (English Edition), 2010, 26 (2): 327-332. [doi:10.3969/j.issn.1003-7985.2010.02.041]
Copy

Alternate operation characteristicsof a solar-ground source heat pump system()
太阳能-地源热泵系统的交替运行特性
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
26
Issue:
2010 2
Page:
327-332
Research Field:
Energy and Power Engineering
Publishing date:
2010-06-30

Info

Title:
Alternate operation characteristicsof a solar-ground source heat pump system
太阳能-地源热泵系统的交替运行特性
Author(s):
Yang Weibo1 3 Chen Zhenqian1 2 Shi Mingheng1
1School of Energy and Environment, Southeast University, Nanjing 210096, China
2International Institute for Urban Systems Engineering, Southeast University, Nanjing 210096, China
3School of Energy and Power Engineering, Yangzhou University, Yangzhou 225127, China
杨卫波1 3 陈振乾1 2 施明恒1
1东南大学能源与环境学院, 南京 210096; 2东南大学城市工程科学国际研究中心, 南京 210096; 3扬州大学能源与动力工程学院, 扬州 225127
Keywords:
solar-ground source heat pump alternate operation characteristics numerical simulation experimental validation
太阳能-地源热泵 交替运行特性 数值模拟 实验验证
PACS:
TU83
DOI:
10.3969/j.issn.1003-7985.2010.02.041
Abstract:
In order to investigate the alternate operation characteristics of a solar-ground source heat pump system(SGSHPS), various alternate operation modes are put forward and defined.A two-dimensional mathematical model with freezing/melting phase changes is developed for the heat transfer analysis of the soil.Based on the numerical solution of the model, the variation trends of underground soil temperature of the SGSHPS operated in various alternate operation modes are discussed.The results indicate that, for the day-night and short-time interval alternate operation modes without solar energy, the operation time fraction of a solar heat source should be confined to from 50% to 58% when operated in an alternate period of 24 h.Meanwhile, the disadvantages of a natural resumption of soil temperature can be overcome effectively by solar energy filling, and an optimal operation effect can be achieved by integrating the mode of solar energy filling with other alternate modes.In addition, the accuracy of the presented model is verified by the experimental data of borehole wall temperatures.The conclusions can provide a reference for the optimization operation of the SGSHPS.
为了探讨太阳能-地源热泵系统的交替运行特性, 提出并定义了各交替运行模式, 建立了交替运行时考虑冻融相变的U形埋管周围土壤传热模型.基于对该模型的数值求解, 探讨了各交替运行模式下地下埋管周围土壤温度的变化趋势.结果表明:各交替运行模式均可有效改善埋管周围土壤温度的恢复效果, 对于无太阳能补热的昼夜交替与短时间间隔交替运行模式, 在以24 h为交替运行周期时, 其太阳能热源承担的时间比例可控制在50%~58%;同时, 利用日间太阳能补热来强制土壤温度的恢复, 可有效克服土壤温度的自然恢复缺陷, 与其他交替模式综合使用可达最佳运行效果.此外, 利用钻孔壁实测数据对所建模型的预测精度进行了验证.研究结论可为太阳能-地源热泵系统的优化运行提供参考.

References:

[1] Deerman J D, Kavanaugh S P.Simulation of vertical U-tubeground-coupled heat pump systems using the cylindrical heat source solution[J].ASHRAE Transactions, 1991, 97(1):287-294.
[2] Yavuzturk C, Spitler J D, Ree S J.A short time step response factor model for vertical ground loop heat exchangers[J].ASHRAE Transactions, 1999, 105(2):475-485.
[3] Yang Weibo, Shi Mingheng, Chen Zhenqian.Study on the freezing characteristics of soil surrounding the ground heat exchanger of ground coupled heat pump[C]//Proceedings of the 22nd International Congress of Refrigeration.Beijing, 2007:147-153.
[4] Han Zongwei, Zheng Maoyu, Kong Fanhong, et al.Numerical simulation of solar assisted ground-source heat pump heating system with latent heat energy storage in severely cold area[J].Applied Thermal Engineering, 2008, 28(18):1427-1436.
[5] Yang Weibo, Shi Mingheng, Dong Hua.Numerical simulation of the performance of a solar-earth source heat pump system [J].Applied Thermal Engineering, 2006, 26(18):2367-2376.
[6] Gu Y, O’Neal D L.Development of an equivalent diameter expression for vertical U-tubes used in ground-coupled heat pumps[J].ASHRAE Transactions, 1998, 104(2):347-355.
[7] Editing Group of HV&AC Design Guide for Underground Architecture.HV& AC design guide for underground architecture[M].Beijing:China Architecture and Building Press, 1983.(in Chinese)
[8] Bonacina C, Comini G, Fasano A.Numerical solution of phase-change problems[J].Int J Heat Mass Transfer, 1973, 16(2):1825-1832.
[9] Rabin Y, Korin E.An efficient numerical solution for the multidimensional solidification(or melting)problem[J].Int J Heat Mass Transfer, 1993, 36(3):673-683.
[10] Patankar S V.Numerical heat transfer and fluid flow[M].New York:Mc-Graw-Hill, 1980.
[11] Yang Weibo.Theoretical and experimental study on solar-ground source heat pump system [D].Nanjing:School of Energy and Environment of Southeast University, 2007.(in Chinese)

Memo

Memo:
Biography: Yang Weibo(1975—), male, doctor, associate professor, yangwb2004@163.com.
Foundation items: The National Key Technology R& D Program of China during the 11th Five-Year Plan Period(No.2008BAJ12B04), China Postdoctoral Science Foundation(No.20090461050), the Project of Research and Development of Ministry of Housing and Urban-Rural Development of China(No.2008-K1-26), the New Century Talent Project of Yangzhou University for Excellent Young Backbone Teacher(2008).
Citation: Yang Weibo, Chen Zhenqian, Shi Mingheng.Alternate operation characteristics of a solar-ground source heat pump system[J].Journal of Southeast University(English Edition), 2010, 26(2):327-332.
Last Update: 2010-06-20