|Table of Contents|

[1] Zhao Xueliang,. Analysis of granular assembly deformationusing discrete element method [J]. Journal of Southeast University (English Edition), 2010, 26 (4): 608-613. [doi:10.3969/j.issn.1003-7985.2010.04.022]
Copy

Analysis of granular assembly deformationusing discrete element method()
颗粒集合体变形破坏特征离散元计算分析
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
26
Issue:
2010 4
Page:
608-613
Research Field:
Civil Engineering
Publishing date:
2010-12-30

Info

Title:
Analysis of granular assembly deformationusing discrete element method
颗粒集合体变形破坏特征离散元计算分析
Author(s):
Zhao Xueliang
School of Civil Engineering, Southeast University, Nanjing 210096, China
赵学亮
东南大学土木工程学院, 南京210096
Keywords:
granular soil loading condition deformation mode numerical simulation strain localization
粒状土 荷载条件 变形模式 数值模拟 局部应变
PACS:
TU411.92
DOI:
10.3969/j.issn.1003-7985.2010.04.022
Abstract:
The discrete element method is used to simulate specimens under three different loading conditions(conventional triaxial compression, plane strain, and direct shear)with different initial conditions to explore the underlying mechanics of the specimen deformation from a microscale perspective. Deformations of specimens with different initial void ratios at different confining stresses under different loading conditions are studied. Results show that the discrete element models successfully capture the specimen deformation and the strain localization. Particle behaviors including particle rotation and displacement and the mesoscale void ratio distributions are used to explain the strain localization and specimen deformation. It is found that the loading condition is one of the most important factors controlling the specimen deformation mode. Microscale behavior of the granular soil is the driving mechanics of the macroscale deformation of the granular assembly.
应用离散单元法研究了颗粒土试样在传统三轴压缩、平面应变和直剪3种不同荷载条件及不同初始条件下的变形破坏特性, 从微观角度分析了不同条件下颗粒土试样变形的根本物理机理.对不同初始孔隙比、不同围压、不同荷载条件下的试样变形和破坏进行了数值模拟计算分析.结果表明, 离散单元法可以准确反映试样的变形情况和局部应变等特性.通过对微观颗粒行为包括颗粒旋转和颗粒平移及局部孔隙率的研究, 从细微观角度解释了不同条件下试样的变形特性和局部应变的产生机理, 结果显示, 荷载条件是影响试样变形破坏模式的重要因素, 土的微观行为特性是其宏观表现特性的根本的内在物理原因.

References:

[1] Lee K L. Comparison of plane strain and triaxial tests on sand [J]. Journal of the Soil Mechanics and Foundations Division, 1970, 96(3): 901-923.
[2] Zhou J, Yang Y X, Liu Y, et al. Numerical modeling of sand liquefaction behavior under cyclic loading [J]. Rock and Soil Mechanics, 2009, 30(4): 1083-1088.(in Chinese)
[3] Cundall P A, Strack O D L. A discrete numerical model for granular assemblies [J]. Geotechnique, 1979, 29(1): 47-65.
[4] Bardet J P. Observations on the effects of particle rotations on the failure of idealized granular materials [J]. Mechanics of Materials, 1994, 18(2): 159-182.
[5] Rothenburg L, Bathurst R J. Micromechanical features of granular assemblies with planar elliptical particles [J]. Geotechnique, 1992, 42(1): 79-95.
[6] Ng T T. Fabric evolution of ellipsoidal arrays with different particle shapes [J]. Journal of Engineering Mechanics, 2001, 127(10): 994-999.
[7] Evans T M. Microscale physical and numerical investigations of shear banding in granular soils [D]. Atlanta: Georgia Institute of Technology, 2005.
[8] Thornton C. Numerical simulations of deviatoric shear deformation of granular media [J]. Geotechnique, 2000, 50(1): 465-481.
[9] Desrues J, Chambon R, Mokni M, et al. Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography [J]. Geotechnique, 1996, 46(3): 529-546.
[10] Suiker A S J, Fleck N A. Frictional collapse of granular assemblies [J]. Journal of Applied Mechanics, Transactions of the ASME, 2004, 71(3): 350-358.
[11] Oda M, Kazama H. Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils [J]. Geotechnique, 1998, 48(4): 465-481.
[12] Cui L, O’Sullivan C. Exploring the macro- and micro-scale response of an idealized granular material in the direct shear apparatus [J]. Geotechnique, 2006, 56(7): 455-468.
[13] Frost J D, Yang C T. Effect of end platens on microstructure evolution in dilatant specimens [J]. Soils and Foundations, 2003, 43(4): 1-11.
[14] Zhang H W, Qin J M. Simulation of mechanical behaviors of granular materials by discrete element method based on mesoscale nonlinear contact law [J]. Chinese Journal of Geotechnical Engineering, 2006, 28(11): 1964-1969.(in Chinese)
[15] Coulomb C A. On an application of the rules of maximum and minimum to some statistical problems, relevant to architecture [J]. Mémoires de Mathématique & de Physique, présentés a l’Académie Royale des Sciences par divers Savans, & lus dans ses Assemblées, 1773: 343-382.
[16] Roscoe K H. The influence of strains in soil mechanics [J]. Geotechnique, 1970, 20(2): 129-170.
[17] Arthur J R F, Dunstan T, Al-Ani Q A J L, et al. Plastic deformation and failure in granular media [J]. Geotechnique, 1977, 27(1): 53-74.
[18] Harris W W, Viggiani G, Mooney M A, et al. Use of stereophotogrammetry to analyze the development of shear bands in sand [J]. Geotechnical Testing Journal, 1995, 18(4): 405-420.

Memo

Memo:
Biography: Zhao Xueliang(1974—), male, doctor, lecturer, xueliang-zhao@yahoo.com.cn.
Foundation item: The National Natural Science Foundation of China(No. 51079030).
Citation: Zhao Xueliang. Analysis of granular assembly deformation using discrete element method[J].Journal of Southeast University(English Edition), 2010, 26(4):608-613.
Last Update: 2010-12-20