|Table of Contents|

[1] Zhou Shigui, Yu Haitao, Hu Minqiang, et al. Transient characteristics analysis of linear flux-switchingpermanent magnet machines for precision control [J]. Journal of Southeast University (English Edition), 2011, 27 (1): 31-35. [doi:10.3969/j.issn.1003-7985.2011.01.007]
Copy

Transient characteristics analysis of linear flux-switchingpermanent magnet machines for precision control()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
27
Issue:
2011 1
Page:
31-35
Research Field:
Electrical Engineering
Publishing date:
2011-03-30

Info

Title:
Transient characteristics analysis of linear flux-switchingpermanent magnet machines for precision control
Author(s):
Zhou Shigui1 2 Yu Haitao1 Hu Minqiang1 Huang Lei1 Yuan Bang1
1 Engineering Research Center for Motion Control of Ministry of Education, Southeast University, Nanjing 210096, China
2 School of Electrical Information and Automation, Qufu Normal University, Rizhao 276826, China
Keywords:
precision control flux-switching permanent magnet machine dq model vector control
PACS:
TM351
DOI:
10.3969/j.issn.1003-7985.2011.01.007
Abstract:
A dynamical dq model is proposed for a linear flux-switching permanent magnet(LFSPM)machine which is suitable for high-precision control applications. The operation principle of the prototype machine is analyzed using the finite element method(FEM), and the parameters, such as the back electromotive force(EMF)and the phase flux linkage, are calculated. The calculated and measured results reveal that the back EMF and the flux linkage are essentially sinusoidal, and the variation of the phase flux linkage profile of the LFSPM machine is similar to that of the linear surface permanent magnet(LSPM)machine. Based on this, a dynamical dq model and a simulation control model are proposed. The simulation results are compared with the test results obtained from a DSP-based control platform, which verifies that the model is correct and effective. Moreover, the model can be used for design optimization and control development.

References:

[1] Rauch S E, Johnson L J. Design principles of flux-switching alternators [J]. Transactions of the American Institute of Electrical Engineers, 1955, 74(3): 1261-1268.
[2] Zhu Z Q, Pang Y, Howe D. Analysis of electromagnetic performance of flux-switching permanent magnet machines by non-linear adaptive lumped parameter magnetic circuit model [J]. IEEE Transactions on Magnetics, 2005, 41(11): 4277-4287.
[3] Zhu Z Q, Chen X, Chen J T, et al. Novel linear flux-switching permanent magnet machines [C]//International Conference on Electrical Machines and Systems. Wuhan, China, 2008: 2948-2953.
[4] Jin Mengjia, Wang Canfei, Shen Jianxin, et al. A modular permanent-magnet flux-switching linear machine with fault-tolerant capability [J]. IEEE Transactions on Magnetics, 2009, 45(8): 3179-3186.
[5] Zhu Z Q, Chen J T. Advanced flux-switching permanent magnet brushless machines [J]. IEEE Transactions on Magnetics, 2010, 46(6): 1447-1453.
[6] Zhu Z Q, Chen J T, Pang Y, et al. Analysis of a novel multi-tooth flux-switching PM brushless AC Machine for high torque direct-drive applications [J]. IEEE Transactions on Magnetics, 2008, 44(11): 4313-4316.
[7] Hua Wei, Cheng Ming, Lu Wei, et al. A new stator-flux orientation strategy for flux-switching permanent magnet motor based on current-hysteresis control [J]. Journal of Applied Physics, 2009, 105: 07F112.
[8] Hua Wei, Cheng Ming. Inductance characteristics of 3-phase flux-switching permanent magnet machine with doubly-salient structure [J]. Transactions of China Electrotechnical Society, 2007, 22(11): 21-28.
[9] Jia Hongyun, Cheng Ming, Hua Wei, et al. A new stator-flux orientation strategy for flux-switching permanent motor drive based on voltage space-vector[C]//International Conference on Electrical Machines and Systems. Wuhan, China, 2008: 2032-3036.
[10] Chen J T, Zhu Z Q, Howe D. Stator and rotor pole combinations for multi-tooth flux-switching permanent-magnet brushless AC machines [J]. IEEE Transactions on Magnetics, 2008, 44(12): 4659-4667.
[11] Chen J T, Zhu Z Q. Winding configurations and optimal stator and rotor pole combination of flux-switching PM brushless AC machines [J]. IEEE Transactions on Industry Applications, 2010, 25(2): 293-302.
[12] Cheng Shukang, Yu Yanjun, Chai Feng, et al. Analysis of the inductances of interior permanent magnet synchronous motor[J]. Proceedings of the CSEE, 2009, 29(18): 94-99.
[13] Rahman K M, Silva H. Identification of machine parameters of a synchronous motor [J]. IEEE Transactions on Industry Applications, 2005, 42(2): 557-565.
[14] Miller T J E, Popescu M, Cossar C, et al. Performance estimation of interior permanent-magnet brushless motors using the voltage-driven flux-MMF diagram [J]. IEEE Transactions on Magnetics, 2006, 42(7): 1867-1872.
[15] Bose B K. Modern power electronics and AC drives[M]. New Jersey: Prentice Hall, 2002: 465-482.
[16] Chau K T, Li Y B, Jiang J Z, et al. Design and control of a PM brushless hybrid generator for wind power application [J]. IEEE Transactions on Magnetics, 2006, 42(10): 3497-3499.

Memo

Memo:
Biographies: Zhou Shigui(1970—), male, graduate; Yu Haitao(corresponding author), male, doctor, professor, htyu@seu.edu.cn.
Foundation item: The National Natural Science Foundation of China(No. 41076054).
Citation: Zhou Shigui, Yu Haitao, Hu Minqiang, et al. Transient characteristics analysis of linear flux-switching permanent magnet machines for precision control[J].Journal of Southeast University(English Edition), 2011, 27(1):31-35.[doi:10.3969/j.issn.1003-7985.2011.01.007]
Last Update: 2011-03-20