[1] Freund J B. Electro-osmosis in a nanometer-scale channel studied by atomistic simulation[J]. J Chem Phys, 2002, 116(5):2194-2200.
[2] Qiao R, Aluru N R. Ion concentrations and velocity profiles in nanochannel electro-osmotic flows[J]. J Chem Phys, 2003, 118(10):4692-4701.
[3] Qiao R, Aluru N R. Charge inversion and flow reversal in a nanochannel electro-osmotic flow[J]. Phys Rev Lett, 2004, 92(19):198301.
[4] Besteman K, Zevenbergen M A G, Lemay S G. Charge inversion by multivalent ions: dependence on dielectric constant and surface-charge density[J]. Phys Rev E, 2005, 72(6): 061501.
[5] Zhu W, Singer S J, Zheng Z, et al. Electro-osmotic flow of a model electrolyte[J]. Phys Rev E, 2005, 71(4):041501.
[6] Greberg H, Kjellander R. Charge inversion in electric double layers and effects of different sizes for counterions and coions[J]. J Chem Phys, 1998, 108(7): 2940-2953.
[7] Urbakh M, Klafter J, Gourdon D, et al. The nonlinear nature of friction[J]. Nature, 2004, 430(6999): 525-528.
[8] Zhu Y X, Granick S. Viscosity of interfacial water[J]. Phys Rev Lett, 2001, 87(9): 096104.
[9] Raviv U, Klein J. Fluidity of bound hydration layers[J]. Science, 2002, 297(5586):1540-1543.
[10] Israelachvili J N. Measurement of the viscosity of liquids in very thin-films[J]. J Colloid Interf Sci, 1986, 110(3):263-271.
[11] Israelachvili J N. Intermolecular and surface forces [M]. 3rd ed. New York: Oxford, 2011:341-380.
[12] Hu H W, Carson G A, Granick S. Relaxation-time of confined liquids under shear[J]. Phys Rev Lett, 1991, 66(21): 2758-2761.
[13] Raviv U, Laurat P, Klein J. Fluidity of water confined to subnanometre films[J]. Nature, 2001, 413(6851):51-54.
[14] Raviv U, Perkin S, Laurat P, et al. Fluidity of water confined down to subnanometer films[J]. Langmuir, 2004, 20(13):5322-5332.
[15] Sakuma H, Otsuki K, Kurihara K. Viscosity and lubricity of aqueous NaCl solution confined between mica surfaces studied by shear resonance measurement[J]. Phys Rev Lett, 2006, 96(4):046104.
[16] Major R C, Houston J E, McGrath M J, et al. Viscous water meniscus under nanoconfinement[J]. Phys Rev Lett, 2006, 96(17):177803.
[17] Li T D, Gao J P, Szoszkiewicz R, et al. Structured and viscous water in subnanometer gaps[J]. Phys Rev B, 2007, 75(11):115415.
[18] Lee S H, Rossky P J. A comparison of the structure and dynamics of liquid water at hydrophobic and hydrophilic surfaces—a molecular-dynamics simulation study[J]. J Chem Phys, 1994, 100(4): 3334-3345.
[19] Sakuma H, Tsuchiya T, Kawamura K, et al. Local behavior of water molecules on brucite, talc, and halite surfaces: a molecular dynamics study[J]. Molecular Simulation, 2004, 30(15):861-871.
[20] Leng Y, Cummings P T. Fluidity of hydration layers nanoconfined between mica surfaces[J]. Phys Rev Lett, 2005, 94(2):026101.
[21] Leng Y S, Cummings P T. Hydration structure of water confined between mica surfaces[J]. J Chem Phys, 2006, 124(7):074711.
[22] Leng Y S, Cummings P T. Shear dynamics of hydration layers[J]. J Chem Phys, 2006, 125(10):104701.
[23] Martini A, Liu Y, Snurr R Q, et al. Molecular dynamics characterization of thin film viscosity for EHL simulation[J]. Tribol Lett, 2006, 21(3): 217-225.
[24] Jorgensen W L, Chandrasekhar J, Madura J D, et al. Comparison of simple potential functions for simulating liquid water[J]. J Chem Phys, 1983, 79(2):926-935.
[25] Miyamoto S, Kollman P A. SETTLE: an analytical version of the SHAKE and RATTLE algorithm for rigid water models[J]. J Comput Chem, 1992, 13(8): 952-962.
[26] Koneshan S, Rasaiah J C, Lynden-Bell R M, et al. Solvent structure, dynamics, and ion mobility in aqueous solutions at 25℃[J]. J Phys Chem B, 1998, 102(21): 4193-4204.
[27] Allen M P, Tildesley D J. Computer simulation of Liquids[M]. New York: Oxford, 1987:152-154.
[28] Yeh I C, Berkowitz M L. Ewald summation for systems with slab geometry[J]. J Chem Phys, 1999, 111(7): 3155-3162.
[29] Berendsen H J C, Postma J P M, Vangunsteren W F, et al.Molecular-dynamics with coupling to an external bath[J]. J Chem Phys, 1984, 81(8): 3684-3690.
[30] Stillinger F H, Weber T A. Computer-simulation of local order in condensed phases of silicon[J]. Phys Rev B, 1985, 31(8): 5262-5271.
[31] Xu D Y, Leng Y S, Chen Y F, et al. Water structures near charged(100)and(111)silicon surfaces[J]. Appl Phys Lett, 2009, 94(20):201901.
[32] Poppe H, Cifuentes A, Kok W T. Theoretical description of the influence of external radial fields on the electroosmotic flow in capillary electrophoresis[J]. Anal Chem, 1996, 68(5): 888-893.