|Table of Contents|

[1] Pan Haixian, Lü Xiaoying, Wang Zhigong, Fang Tao, et al. Microelectrode array for bioelectrical signal stimulation and recording [J]. Journal of Southeast University (English Edition), 2011, 27 (4): 361-366. [doi:10.3969/j.issn.1003-7985.2011.04.003]
Copy

Microelectrode array for bioelectrical signal stimulation and recording()
生物电信号激励与探测用微电极阵列
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
27
Issue:
2011 4
Page:
361-366
Research Field:
Circuit and System
Publishing date:
2011-12-31

Info

Title:
Microelectrode array for bioelectrical signal stimulation and recording
生物电信号激励与探测用微电极阵列
Author(s):
Pan Haixian1 Lü Xiaoying1 Wang Zhigong2 Fang Tao1 Qiu Lei2 Huang Zonghao2
1 State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
2 Institute of RF- & OE-ICs, Southeast University, Nanjing 210096, China
潘海仙1 吕晓迎1 王志功2 方涛1 邱雷2 黄宗浩2
1东南大学生物电子学国家重点实验室, 南京210096; 2东南大学射频与光电集成电路研究所, 南京210096
Keywords:
microelectrode array(MEA) stimulation and recording extracellular recording toad sciatic nerve
微电极阵列(MEA) 激励与探测 胞外记录 蟾蜍坐骨神经
PACS:
TN43
DOI:
10.3969/j.issn.1003-7985.2011.04.003
Abstract:
A microelectrode array(MEA)is presented, which is composed of 60 independent electrodes with 59 working ones and one reference one, and they are divided into 30 pairs. Except for the reference electrode, each pair consists of one stimulating electrode and one recording electrode. Supported by the peripheral circuits, four electrode states to study the bioelectrical signal of biological tissue or slice cultured in-vitro on the surface of the electrodes can be realized through each pair of electrodes. The four electrode states are stimulation, recording, stimulation and recording simultaneously, and isolation. The state of each pair of working electrodes can be arbitrarily controlled according to actual needs. The MEAs are fabricated in printed circuit board(PCB)technology. The total area of the PCB-based MEA is 49 mm×49 mm. The impedance measurement of MEA is carried out in 0.9% sodium chloride solution at room temperature by means of 2-point measurements with an Agilent LCR meter, and the test signal for the impedance measurement is sinusoidal(AC voltage 50 mV, sweeping frequency 20 Hz to 10 kHz). The electrode impedance is between 200 and 3 kΩ while the frequency is between 500 and 1 000 Hz. The electrode impedance magnitude is inversely proportional to the frequency. Experiments of toad sciatic nerve in-vitro stimulation and recording and signal regeneration between isolated toad sciatic nerves are carried out on the PCB-based MEA. The results show that the MEA can be used for bioelectrical signal stimulation, recording, stimulation and recording simultaneously, and isolation of biological tissues or slices in-vitro.
介绍了一种微电极阵列(MEA), 该MEA包含60个独立的电极, 其中59个为工作电极, 一个为参考电极.工作电极成对排列, 每一对工作电极分别包含一个激励电极和一个探测电极.结合外围电路, 每一对工作电极的组合都可以实现对电极表面培养的生物组织或切片进行4种状态(激励、探测、同时激励和探测、隔离)的控制.MEA采用PCB工艺制作完成, 总面积为49 mm×49 mm. 采用LCR测试仪, 在20 Hz~10 kHz, 50 mV交流信号下对工作电极进行了阻抗测试, 测试在0.9%的NaCl溶液中进行.测试结果表明, 频率在500~1 000 Hz之间时, 工作电极的阻抗在200~3 kΩ之间, 电极的阻抗幅值与频率成反比.采用MEA进行了蟾蜍离体坐骨神经干电信号激励与探测实验, 及坐骨神经干之间的神经信号再生实验.实验结果表明, MEA可实现对体外培养的生物组织或切片进行激励、探测、同时激励和探测、隔离4种状态的控制.

References:

[1] Hoag H. Neuroengineering: remote control[J]. Nature, 2003, 423(6942): 796-798.
[2] Eversmann B, Jenkner M, Hofmann F, et al. A 128×128 CMOS biosensor array for extracellular recording of neural activity[J]. IEEE J Solid-State Circuits, 2003, 38(12):2306-2317.
[3] Heer F, Franks W, Blau A, et al. CMOS microelectrode array for the monitoring of electrogenic cells[J]. Biosens Bioelectron, 2004, 20(2): 358-386.
[4] Heer F, Hafizovic S, Franks W, et al. CMOS microelectrode array for bidirectional interaction with neuronal networks[J]. IEEE J Solid-State Circuits, 2006, 41(7):1620-1629.
[5] Xiang G X, Pan L B, Huang L H, et al. Microelectrode array-based system for neuropharmacological applications with cortical neurons cultured in vitro[J]. Biosens Bioelectron, 2007, 22(11): 2478-2484.
[6] Neher E, Sakmann B. Single-channel currents recorded from membrane of denervated frog muscle fibres[J]. Nature, 1976, 260(5554): 799-802.
[7] Cole K. Dynamic electrical characteristics of the squid axon membrane[J]. Arch Sci Physiol, 1949, 3: 253-258.
[8] Thomas C A, Springer P A, Loeb G E, et al. A miniature microelectrode array to monitor the bioelectrical activity of cultured cells[J]. Exp Cell Res, 1972, 74(1): 61-66.
[9] Liu Q J, Ye W W, Xiao L D, et al. Extracellular potentials recording in intact olfactory epithelium by microelectrode array for a bioelectronic nose[J]. Biosens Bioelectron, 2010, 25(10):2212-2217.
[10] Berdondini L, Massobrio P, Chiappalone M, et al. Extracellular recordings from locally dense microelectrode arrays coupled to dissociated cortical cultures[J]. J Neurosci Meth, 2009, 177(2): 386-396.
[11] Hill A J, Jones N A, Williams C M, et al. Development of multi-electrode array screening for anticonvulsants in acute rat brain slices[J].J Neurosci Meth, 2010, 185(2): 246-256.
[12] Frey U, Heer F, Pedron R, et al. An 11k-electrode 126-channel high-density microelectrode array to interact with electrogenic cells[C]//IEEE International Solid-State Circuits Conference. San Francisco, CA, USA, 2007: 158-160.
[13] Xu G X, Ye X S, Qin L F, et al. Cell-based biosensors based on light-addressable potentiometric sensors for single cell monitoring[J]. Biosens Bioelectron, 2005, 20(9):1757-1763.
[14] Chen C H, Yao D J, Tseng S H, et al. Micro-multi-probe electrode array to measure neural signals[J]. Biosens Bioelectron, 2009, 24(7): 1911-1917.
[15] Pan H X, Lü X Y, Wang Z G, et al. Silicon-based microelectrode arrays for stimulation and signal recording of in vitro cultured neurons[J].Sci China Ser F: Info Sci, 2011, 54(10): 2199-2208.
[16] Lin J H, Wu X M, Huang P S, et al. Development of silicon-based microelectrode array[J]. Sci China Ser E: Tech Sci, 2009, 52(8): 2391-2395.
[17] Pan H X, Lü X Y, Wang Z G, et al. Microelectrode array for detecting electrical activities of neuron assemble[J]. Journal of Southeast University: Natural Science Edition, 2009, 39(3): 468-472.(in Chinese)

Memo

Memo:
Biographies: Pan Haixian(1983—), female, graduate; Lü Xiaoying(corresponding author), female, doctor, professor, luxy@seu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.61076118, 90307013, 90707005), the Natural Science Foundation of Jiangsu Province(No.BK2008032), Special Foundation and Open Foundation of the State Key Laboratory of Bioelectronics of Southeast University.
Citation: Pan Haixian, Lü Xiaoying, Wang Zhigong, et al.Microelectrode array for bioelectrical signal stimulation and recording[J].Journal of Southeast University(English Edition), 2011, 27(4):361-366.[doi:10.3969/j.issn.1003-7985.2011.04.003]
Last Update: 2011-12-20