[1] Hughes M P. Strategies for dielectrophoretic separation in laboratory-on-a-chip systems [J]. Electrophoresis, 2002, 23(16):2569-2582.
[2] Chiou P Y, Ohta A T, Wu M C. Massively parallel manipulation of single cells and microparticles using optical images [J]. Nature, 2005, 436(7049):370-372.
[3] Jamshidi A, Neale S L, Yu K, et al. NanoPen: dynamic, low-power, and light-actuated patterning of nanoparticles [J]. Nano Lett, 2009, 9(8):2921-2925.
[4] Song C F, Yi H, Ni Z H. Single micro-particle manipulation based on light-induced dielectrophoresis [J].Journal of Mechanical Engineering, 2010, 46(7): 148-153.
[5] Hwang H, Choi Y J, Choi W, et al. Interactive manipulation of blood cells using a lens-integrated liquid crystal display based optoelectronic tweezers system [J]. Electrophoresis, 2008, 29(6):1203-1212.
[6] Hwang H, Oh Y, Kim J J, et al. Reduction of nonspecific surface-particle interactions in optoelectronic tweezers[J]. Appl Phys Lett, 2008, 92(2): 024108.
[7] Hwang H, Park Y H, Park J K. Optoelectrofluidic control of colloidal assembly in an optically induced electric field [J]. Langmuir, 2009, 25(11):6010-6014.
[8] Ni Z H, Yi H, Zhu S C. Research on critical technology of micro/nano bioparticles manipulation platform based on light-induced dielectrophoresis [J]. Sci China Ser E:Tech Sci, 2009, 39(10): 1635-1642.
[9] Zhu X L, Yi H, Ni Z H.Frequency-dependent behaviors of individual microscopic particles in an optically induced dielectrophoresis device [J]. Biomicrofluidics, 2010, 4(1): 013202.
[10] Zhang Y, Wu C D, Yuan B L. Progress on path planning research for robot [J].Control Engineering of China, 2003, 10(Z1): 152-154.(in Chinese)
[11] Aydin S, Temeltas H. Fuzzy-differential evolution algorithm for planning time-optimal trajectories of a unicycle mobile robot on a predefined path [J]. Adv Robotics, 2004, 18(7):725-748.
[12] Yu J L, Cheng S Y, Sun Z Q. An optimal algorithm of 3D path planning for mobile robots [J]. Journal of Central South University, 2009, 40(2):471-477.
[13] Ali M S A D, Babu N R, Varghese K. Collision free path planning of cooperative crane manipulators using genetic algorithm [J]. J Comput Civil Eng, 2005, 19(2):182-193.
[14] Khatib O. Real-time obstacle avoidance for manipulators and mobile robots [J]. Int J Robot Res, 1986, 5(1):90-98.
[15] de Berg M, Cheong O, van Kreveld M, et al. Computational geometry: algorithms and applications[M]. 3rd Ed. Springer-Verlag, 2008:284-287.
[16] Ge S S, Cui Y J.New potential functions for mobile robot path planning [J]. IEEE Transactions on Robotics and Automation, 2000, 16(5):615-620.
[17] Zhang P Y, Lu T S, Song L B. Soccer robot path planning based on the artificial potential field approach with simulated annealing[J]. Robotica, 2004, 22(5):563-566.
[18] Kuang F, Wang Y N. Robot path planning based on hybrid artificial potential field/genetic algorithm [J]. Journal of System Simulation, 2006, 18(3):774-777.(in Chinese)
[19] Zhu X L, Yin Z F, Gao Z Q. Experimental study on filtering, transporting, concentrating and focusing of microparticles based on optically induced dielectrophoresis [J].Sci China Ser E:Tech Sci, 2010, 53(9): 2388-2396.
[20] Zhu Y, Zhang T, Song J Y. An improved wall following method for escaping from local minimum in artificial potential field based path planning[C]//Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference. Shanghai, China, 2009:6017-6022.