[1] Fu C H Y, Mourao-Miranda J, Costafreda S G, et al. Pattern classification of sad facial processing: toward the development of neurobiological markers in depression[J]. Society of Biological Psychiatry, 2008, 63(7): 656-662.
[2] Ecker C, Rocha-Rego V, Johnston P, et al. Investigating the predictive value of whole-brain structural MR scans in autism: a pattern classification approach[J]. NeuroImage, 2010, 49(1): 44-56.
[3] Wee C Y, Yap P T, Li W B, et al. Enriched white matter connectivity networks for accurate identification of MCI patients[J]. NeuroImage, 2011, 54(3):1812-1822.
[4] Sui J, Pearlson G, Caprihan A, et al. Discriminating schizophrenia and bipolar disorder by fusing fMRI and DTI in a multimodal CCA+joint ICA model[J]. NeuroImage, 2011, 57(3): 839-855.
[5] Brown K S, Ortigue S, Grafton S T, et al. Improving human brain mapping via joint inversion of brain electrodynamics and the BOLD signal[J]. NeuroImage, 2010, 49(3): 2401-2415.
[6] Wu L, Eichele T, Calhoun V D. Reactivity of hemodynamic responses and functional connectivity to different states of alpha synchrony: a concurrent EEG-fMRI study[J]. NeuroImage, 2010, 52(4):1252-1260.
[7] Amolins K, Zhang Y, Dare P. Wavelet based image fusion techniques—an introduction, review and comparison[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2007, 62(4):249-263.
[8] Pajares G, de la Cruz J M. A wavelet-based image fusion tutorial[J]. Pattern Recognition, 2004, 37(9): 1855-1872.
[9] Mourao-Miranda J, Bokde A L, Born C, et al. Classifying brain states and determining the discriminating activation patterns: support vector machine on functional MRI data[J]. NeuroImage, 2005, 28(4): 980-995.
[10] Formisano E, de Martino F, Valente G. Multivariate analysis of fMRI time series: classification and regression of brain responses using machine learning[J]. Magn Reson Imaging, 2008, 26(7): 921-934.