|Table of Contents|

[1] Lu Zhenbo, Wang Shusheng,. An empirical study on travel demand management modelingbased on discrete choice method [J]. Journal of Southeast University (English Edition), 2012, 28 (1): 106-111. [doi:10.3969/j.issn.1003-7985.2012.01.018]
Copy

An empirical study on travel demand management modelingbased on discrete choice method
基于离散选择模型的交通需求管理建模实证研究
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
28
Issue:
2012 1
Page:
106-111
Research Field:
Traffic and Transportation Engineering
Publishing date:
2012-03-30

Info

Title:
An empirical study on travel demand management modelingbased on discrete choice method
基于离散选择模型的交通需求管理建模实证研究
Author(s):
Lu Zhenbo, Wang Shusheng
Intelligent Transportation System Research Center, Southeast University, Nanjing 210096, China
陆振波, 王树盛
东南大学智能运输系统研究中心, 南京 210096
Keywords:
discrete choice travel demand forecasting travel demand management logit model
离散选择 交通需求预测 交通需求管理 logit模型
PACS:
U491.122
DOI:
10.3969/j.issn.1003-7985.2012.01.018
Abstract:
In view of the problem that the requirements of travel demand management and traffic policy-sensitivity are ignored during the establishment process of the travel demand forecasting model, a discrete-choice-based travel demand forecasting model is proposed to demonstrate its applicability to travel demand management. A car-bus discrete choice model is established, including three variables, i.e., individual socioeconomic characteristics, time, and cost, and the traffic policy-sensitivity is evaluated through two kinds of traffic policies: parking charges and bus priorities. The empirical results show that travel choice is insensitive to the policy of parking charges as 88.41% of the travelers are insensitive to parking charges; travel choice is, however, sensitive to the policy of bus priorities as 67.70% of the car travelers and 77.02% of the bus travelers are sensitive to bus priorities. The discrete-choice-based travel demand forecasting model is quite policy-sensitive and also has a good adaptability for travel demand management when meeting the basic functions of the demand forecasting model.
针对现有交通需求预测模型构建过程中忽视交通需求管理要求及缺乏政策敏感性等问题, 建立了基于离散选择的交通需求预测模型并论证了其对交通需求管理的适应性.建立包括个人社会经济特征、时间和价值3个变量的私人小汽车-公交车离散选择模型, 并通过停车收费和公交优先2种交通政策来评估模型的政策敏感性.实证结果表明:出行选择对停车收费政策敏感性不强, 表现为88.41%的出行者对停车收费政策不敏感;出行选择对公交优先政策敏感性较强, 表现为67.70%的私家车出行者及77.02%的公交车出行者对公交优先政策敏感.基于离散选择模型的交通需求预测模型具有政策敏感性, 在满足需求预测基本功能的同时对需求管理具有很好的适应性.

References:

[1] Guan Hongzhi. Disaggregate model—analysis tools of traffic behavior[M]. Beijing: China Communications Press, 2004:119-120.(in Chinese)
[2] Train K E. Discrete choice methods with simulation [M]. Cambridge University Press, 2003:138-139;151-154.
[3] Ben-Akiva M E, Lerman S R. Discrete choice analysis: the theory and application to travel demand [M]. Cambridge, MA: MIT Press, 1987: 252.
[4] Hensher D A, Greene W H. The mixed logit model: the state of practice and warnings for the unwary [R]. Sydney: Institute of Transport Studies of the University of Sydney, 2001.
[5] Domencich T A, McFadden D. Urban travel demand: a behavioral analysis[M]. New York: American Elsevier Publishing Company, 1975:65-69.
[6] Cramer J S. The origin and development of the logit model [R].Amsterdam: University of Amsterdam and Tinbergen, 2003:1-8.
[7] Dong Xiaojing, Koppelman F S. Comparison of methods representing heterogeneity in logit models[C]//The Physical and Social Dimensions of Travel 10th International Conference on Travel Behavior Research. Lucerne, Switzerland, 2003:1-20.
[8] Revelt D, Train K. Customer-specific taste parameters and mixed logit model[R].Berkeley, CA, USA: University of California at Berkeley, 1999:3-10.
[9] Hess S, Bierlaire M, Polak J W. Estimation of value of travel-time saving using mixed logit models[J]. Transportation Research Part A: Policy and Practice, 2005, 39(2):221-236.

Memo

Memo:
Biography: Lu Zhenbo(1975—), male, doctor, lecturer, seuitslzb@126.com.
Citation: Lu Zhenbo, Wang Shusheng. An empirical study on travel demand management modeling based on discrete choice method[J].Journal of Southeast University(English Edition), 2012, 28(1):106-111.[doi:10.3969/j.issn.1003-7985.2012.01.018]
Last Update: 2012-03-20