|Table of Contents|

[1] Lin Guoyu, Yang Biao, Zhang Weigong,. Human tracking in camera network with non-overlapping FOVs [J]. Journal of Southeast University (English Edition), 2012, 28 (2): 156-163. [doi:10.3969/j.issn.1003-7985.2012.02.005]
Copy

Human tracking in camera network with non-overlapping FOVs()
在非重叠视域监控网络中的人体目标跟踪
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
28
Issue:
2012 2
Page:
156-163
Research Field:
Computer Science and Engineering
Publishing date:
2012-06-30

Info

Title:
Human tracking in camera network with non-overlapping FOVs
在非重叠视域监控网络中的人体目标跟踪
Author(s):
Lin Guoyu Yang Biao Zhang Weigong
School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China
林国余 杨彪 张为公
东南大学仪器科学与工程学院, 南京210096
Keywords:
multiple camera tracking non-overlapping FOVs spatio-temporal information human appearance model incremental learning
多摄像机跟踪 非重叠视域 时空关系 人体外观模型 增量学习
PACS:
TP391
DOI:
10.3969/j.issn.1003-7985.2012.02.005
Abstract:
An adaptive human tracking method across spatially separated surveillance cameras with non-overlapping fields of views(FOVs)is proposed. The method relies on the two cues of the human appearance model and spatio-temporal information between cameras. For the human appearance model, an HSV color histogram is extracted from different human body parts(head, torso, and legs), then a weighted algorithm is used to compute the similarity distance of two people. Finally, a similarity sorting algorithm with two thresholds is exploited to find the correspondence. The spatio-temporal information is established in the learning phase and is updated incrementally according to the latest correspondence. The experimental results prove that the proposed human tracking method is effective without requiring camera calibration and it becomes more accurate over time as new observations are accumulated.
针对存在非重叠视野的摄像机监控网络, 提出了一种基于人体外观模型和摄像机间时空信息的人体目标自适应跟踪算法.对于人体外观模型, 首先根据人体测量学理论将人体目标划分成头、躯干和腿3个部分, 分别提取各部分的HSV颜色直方图特征用于构建人体外观模型, 然后引入加权因子计算人体目标之间的相似度, 最后采用一种基于双阈值的相似度排序算法确定人体目标的匹配关系.对于摄像机间的时空信息, 通过增量学习, 不断积累目标关联信息, 经统计分析逐步更新摄像机间时空信息.实验结果验证了所提出的跟踪算法在无需摄像机标定的条件下能够实现人体目标的连续跟踪, 且随着关联匹配信息的累加, 算法的跟踪准确性也逐步提高.

References:

[1] Kuo C H, Huang C, Nevatia R. Inter-camera association of multi-target tracks by on-line learned appearance affinity models[C]//Proceedings of the 11th European Conference on Computer Vision. Berlin, Germany, 2010: 383-396.
[2] Cai Q, Aggarwal J K. Tracking human motion in structured environments using a distributed-camera system[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(11): 1241-1247.
[3] Collins R T. Algorithms for cooperative multisensor surveillance [J]. Proceedings of the IEEE, 2001, 89(10): 1456-1477.
[4] Khan S, Shah M. Consistent labeling of tracked objects in multiple cameras with overlapping fields of view [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(10): 1355-1360.
[5] Huang T, Russell S. Object identification in a Bayesian context [C]//International Joint Conferences on Artificial Intelligence. San Francisco, USA, 1997: 1276-1283.
[6] Pasula H, Russell S, Ostland M, et al. Tracking many objects with many sensors [C]//Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence. San Francisco, USA, 1999: 1160-1171.
[7] Kettnaker V, Zabih R. Bayesian multi-camera surveillance [C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Fort Collins, CO, USA, 1999: 253-259.
[8] Javed O. Tracking across multiple cameras with disjoint views [C]//Proceedings of the IEEE International Conference on Computer Vision. Washington DC, USA, 2003: 952-957.
[9] Dick A R, Brooks M J. A stochastic approach to tracking objects across multiple cameras [C]//Proceedings of Australian Conference on Artificial Intelligence. Berlin, Germany, 2004:160-170.
[10] Makris D, Ellis T, Black J. Bridging the gaps between cameras [C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington DC, USA, 2004: 205-210.
[11] Wang X, Tieu K, Grimson E. Correspondence-free activity analysis and scene modeling in multiple camera views [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(1): 32-17.
[12] Song B, Roy-Chowdhury A K. Robust tracking in a camera network: a multi-objective optimization framework [J]. IEEE Journal on Selected Topics in Signal Processing, 2008, 2(4): 582-596.
[13] Porikli F. Inter-camera color calibration by correlation model function [C]//IEEE International Conference on Image Processing. Barcelona, Spain, 2003: 133-136.
[14] Madden C, Cheng E D, Piccardi M. Tracking people across disjoint camera views by an illumination-tolerant appearance representation [J]. Machine Vision and Applications, 2007, 18(3): 233-247.
[15] Lian G, Lai J, Zheng W. Spatial-temporal consistent labeling of tracked pedestrians across non-overlapping camera views [J]. Pattern Recognition, 2011, 44(5): 1121-1136.
[16] Javed O, Shafique K, Shah M. Appearance modeling for tracking in multiple non-overlapping cameras [C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington DC, USA, 2005:26-33.
[17] Gilbert A, Bowden R. Tracking objects across cameras by incrementally learning inter-camera colour calibration and patterns of activity [C]//Proceedings of the 9th European Conference on Computer Vision. Berlin, Germany, 2006:125-136.
[18] Prosser B, Gong S, Xiang T. Multi-camera matching using bi-directional cumulative brightness transfer functions [C]//British Machine Vision Conference. London, 2008:1-10.
[19] Jeong K, Jaynes C. Object matching in disjoint cameras using a color transfer approach [J]. Machine Vision and Application, 2008, 19(5): 443-455.
[20] Mazzeo P, Spagnolo P, Orazio T. Object tracking by non-overlapping distributed camera network [C]//Proceedings of the Advanced Concepts for Intelligent Vision Systems. Bordeaux, France, 2009: 516-527.

Memo

Memo:
Biography: Lin Guoyu(1979—), male, doctor, lecturer, Andrew_Lin@seu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.60972001), the Science and Technology Plan of Suzhou City(No.SG201076).
Citation: Lin Guoyu, Yang Biao, Zhang Weigong. Human tracking in camera network with non-overlapping FOVs[J].Journal of Southeast University(English Edition), 2012, 28(2):156-163.[doi:10.3969/j.issn.1003-7985.2012.02.005]
Last Update: 2012-06-20