|Table of Contents|

[1] Zhang BoZhong Zhaoping, Fu Zongming, Zhong Daoxu,. Experimental studies on photocatalytic oxidation of nitric oxidesusing titanium dioxide [J]. Journal of Southeast University (English Edition), 2012, 28 (2): 179-183. [doi:10.3969/j.issn.1003-7985.2012.02.009]
Copy

Experimental studies on photocatalytic oxidation of nitric oxidesusing titanium dioxide()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
28
Issue:
2012 2
Page:
179-183
Research Field:
Environmental Science and Engineering
Publishing date:
2012-06-30

Info

Title:
Experimental studies on photocatalytic oxidation of nitric oxidesusing titanium dioxide
Author(s):
Zhang BoZhong Zhaoping Fu Zongming Zhong Daoxu
School of Energy and Environment, Southeast University, Nanjing 210096, China
Keywords:
photocatalytic oxidation nitric oxides titanium dioxide
PACS:
X511
DOI:
10.3969/j.issn.1003-7985.2012.02.009
Abstract:
In order to remove nitric oxides(NO)from flue gas, experimental studies on the photocatalytic oxidation(PCO)of NO are carried out in an efficient laboratory-scale reactor. Nano-sized TiO2 particles loading on quartz sand are prepared and used as the photocatalyst. Effects of several key operating parameters on NO conversion are investigated, including operating temperature, NO inlet concentration, oxygen percentage, relative humidity and residence time. The results illustrate that the NO inlet concentration, the oxygen percentage and the relative humidity play an important role in the oxidation of NO. A lower NO inlet concentration and a higher oxygen percentage result in a higher NO conversion efficiency. When the relative humidity is 8%, the maximum value of NO conversion efficiency is achieved. In addition, the operating temperature and the residence time have a little effect on the conversion efficiency of NO.

References:

[1] Allen G C, El-Turki A, Hallam K R, et al. Role of NO2 and SO2 in degradation of limestone [J]. British Corrosion Journal, 2000, 35(1): 35-48.
[2] Ballari M M, Yu Q L, Brouwers H J H. Experimental study of NO and NO2 degradation by photocatalytically active concrete [J]. Catalysis Today, 2010, 161(1): 175-180.
[3] Radojevic M. Reduction of nitrogen oxides in flue gases [J]. Environmental Pollution, 1998, 102(1): 685-689.
[4] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, 238(5358): 37-38.
[5] Augugliaro V, Voluccia S, Loddo V, et al. Photocatalytic oxidation of gaseous toluene on anatase TiO2 catalyst: mechanistic aspects and FT-IR investigation [J]. Applied Catalysis B: Environmental, 1999, 20(1): 15-27.
[6] Takeda N, Torimoto T, Sampath S, et al. Effect of inert supports for titanium dioxide loading on enhancement of photodecomposition rate of gaseous propionaldehyde [J]. Journal of Physical Chemistry, 1995, 99(24): 9986-9991.
[7] Shigwedha N, Hua Z Z, Chen J. A new photon kinetic-measurement based on the kinetics of electron-hole pairs in photodegradation of textile wastewater using the UV-H2O2FS-TiO2 process [J]. Journal of Environmental Sciences, 2007, 19(3): 367-373.
[8] Ibusuki T, Takeuchi K. Removal of low concentration of nitrogen oxides through photoassisted heterogeneous catalysis [J]. Journal of Molecular Catalysis, 1994, 88(1): 93-102.
[9] Devahasdin S, Fan C, Li K Y, et al. TiO2 photocatalytic oxidation of nitric oxide transient behavior and reaction kinetics [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 156(1/2/3): 161-170.
[10] Mahalakshmi M, Priya S V, Arabindoo B, et al. Photocatalytic degradation of aqueous propoxur solution using TiO2 and Hβ zeolite-supported TiO2 [J]. Journal of Hazardous Materials, 2009, 161(1): 336-343.
[11] Maggos T, Plassais A, Bartzis J G, et al. Photocatalytic degradation of NOxx in a pilot street canyon configuration using TiO2-mortar panels [J]. Environmental Monitoring and Assessment, 2008, 136(1/2/3): 35-44.
[12] Linsebigler A L, Lu G Q, Yates J T. Photocatalysis on TiO2 surfaces-principles, mechanisms, and selected results [J]. Chemical Reviews, 1995, 95(3): 735-758.
[13] Laufsa S, Burgeth G, Duttlinger W, et al. Conversion of nitrogen oxides on commercial photocatalytic dispersion paints [J]. Atmospheric Environment, 2010, 44(19): 2341-2349.
[14] Zhao Y, Han J, Zhao L, et al. Experimental studies on simultaneous desulfurization and denitrification of flue gas by photocatalysis with TiO2 [J]. Journal of Power Engineering, 2007, 27(3): 411-414.(in Chinese)
[15] Negishi N, Takeuchi K, Ibusuki T. Surface structure of the TiO2 thin film photocatalyst [J]. Journal of Materials Science, 1998, 33(24): 5789-5794.
[16] Subramanian V, Wolf E, Kamat P V. Semiconductor-metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films?[J]. Journal of Physical Chemistry, 2001, 105(46): 11439-11446.
[17] Tomkiewicz M. Scaling properties in photocatalysis [J]. Catalysis Today, 2000, 58(2/3): 115-123.
[18] Hoffmann M R, Martin S T, Choi W Y, et al. Environmental application of semiconductor photocatalysis [J]. Chemical Reviews, 1995, 95(1): 69-96.

Memo

Memo:
Biographies: Zhang Bo(1989—), male, graduate; Zhong Zhaoping(corresponding author), male, doctor, professor, zzhong@seu.edu.cn.
Foundation items: The National High Technology Research Program of China(863 Program)(No.2008AA05Z303), the Science and Technology Program of Jiangsu Province(No.BE2010184), the Environmental Protection Scientific Research Subject of Jiangsu Province(No.201031).
Citation: Zhang Bo, Zhong Zhaoping, Fu Zongming, et al.Experimental studies on photocatalytic oxidation of nitric oxides using titanium dioxide[J].Journal of Southeast University(English Edition), 2012, 28(2):179-183.[doi:10.3969/j.issn.1003-7985.2012.02.009]
Last Update: 2012-06-20