[1] Abrishamkar F, Irvine J. Comparison of current solutions for the provision of voice services to passengers on high speed trains [C]//IEEE Vehicular Technology Conference. Boston, USA, 2000: 1498-1505.
[2] Zhang Y J, Letaief K B. An efficient resource-allocation scheme for spatial multiuser access in MIMO/OFDM systems [J]. IEEE Transactions on Communications, 2005, 53(1): 107-116.
[3] Pischella M, Belfiore J. Distributed margin adaptive resource allocation in MIMO OFDMA networks [J]. IEEE Transactions on Communications, 2010, 58(8): 2371-2380.
[4] Chen C, Zhang R, Cioffi J M. A capacity-approaching algorithm for resource allocation in MIMO-OFDM multiple-access channel [C]//IEEE Global Telecommunications Conference. Washington DC, USA, 2007: 2932-2936.
[5] Ho W W L, Liang Y. Optimal resource allocation for multiuser MIMO-OFDM systems with user rate constraints [J]. IEEE Transactions on Vehicular Technology, 2009, 58(3): 1190-1203.
[6] Sun Q, Tian H, Dong K, et al. A novel resource allocation algorithm for multiuser downlink MIMO-OFDMA [C]//IEEE Wireless Communications and Networking Conference. Las Vegas, USA, 2008: 1844-1848.
[7] Zhang J, Tan Z, Zhong Z, et al. A multi-mode multi-band and multi-system-based access architecture for high-speed railways [C]//IEEE Vehicular Technology Conference. Ottawa, Canada, 2010: 1-5.
[8] Gazor S, Alsuhaili K. Communications over the best singular mode of a reciprocal MIMO channel [J]. IEEE Transactions on Communications, 2010, 58(7): 1993-2001.
[9] Goldsmith A. Wireless communications [M]. Cambridge, UK: Cambridge University Press, 2005.
[10] Wang T, Prokis J G, Masry E, et al. Performance degradation of OFDM systems due to Doppler spreading [J]. IEEE Transactions on Wireless Communications, 2006, 5(6): 1422-1432.
[11] Wong C Y, Cheng R S. Multi-user OFDM with adaptive subcarrier, bit, and power allocation [J]. IEEE Journal on Selected Areas in Communications, 1999, 17(10): 1747-1758.