[1] Craighead H G. Nanoelectromechanical systems [J]. Science, 2000, 290(5496):1532-1535.
[2] Ekinci K L, Roukes M L. Nanoelectromechanical systems [J]. Review of Scientific Instruments, 2005, 76(6):061101-0611013.
[3] Huang X M H, Feng X L, Zorman C A, et al. VHF, UHF and microwave frequency nanomechanical resonators [J]. New Journal of Physics, 2005, 7(1):247-261.
[4] Feng X L, He R R, Yang P D, et al. Very high frequency silicon nanowire electromechanical resonators [J]. Nano Lett, 2007, 7(7):1953-1959.
[5] He R R, Feng X L, Roukes M L, et al. Self-transducing silicon nanowire electromechanical systems at room temperature [J]. Nano Letts, 2008, 8(6):1756-1761.
[6] Naik A K, Hanay M S, Hiebert W K, et al. Towards single-molecule nanomechanical mass spectrometry [J]. Nature Nanotechnology, 2009, 4:445-450.
[7] Li M, Tang H X, Roukes M L. Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications [J]. Nature Nanotechnology, 2007, 2:114-120.
[8] Yang Y L, Xia X Y, Gan X H, et al. Nano-thick resonant cantilevers with a novel specific reaction-induced frequency-increase effect for ultra-sensitive chemical detection [J]. Journal of Micromechanics and Microengineering, 2010, 20(5): 055022-055027.
[9] Yu H T, Li X X, Gan X H, et al. Resonant-cantilever bio/chemical sensors with an integrated heater for both resonance exciting optimization and sensing repeatability enhancement [J]. Journal of Micromechanics and Microengineering, 2009, 19(4): 045023-045033.
[10] Feng X L, White C J, Hajimiri A, et al. A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator [J]. Nature Nanotechnology, 2008, 3: 342-346.
[11] Liu N, Giesen F, Belov M, Losby J, et al. Time-domain control of ultrahigh-frequency nanomechanical systems [J]. Nature Nanotechnology, 2008, 3: 715-719.
[12] Shagam M Y. Nanomechanical displacement detection using fiber optic interferometry [D]. Boston: College of Engineering, Boston University, 2006.
[13] Kouh T, Karabacak D, Kim D H, et al. Diffraction effects in optical interferometric displacement detection in nanoelectromechanical systems [J]. Applied Physics Letters, 2005, 86(1): 13106-13109.
[14] Zook D J, Herb W R. Polysilicon sealed vacuum cavities for microelectromechanical systems [J]. Journal of Vacuum and Science Technology A, 1999, 17(4): 2286-2294.
[15] Liu B, Liu Z W, Wang C W, et al. Research progress of RF-MEMS devices [J]. Nanoscience and Technology, 2005, 5:35-38.
[16] Yue D X, Yu H, Yuan W M. Nonlinear characteristics of sub-micro cantilever beam resonators actuated by statical electricity [J]. Optics and Precision Engineering, 2011, 19(4):783-788.(in Chinese)
[17] Yu H, Yuan W M, Yue D X. Measurement of frequency mixing characteristics of H-type submicro beams [J]. Nanotechnology and Precision Engineering, 2011, 9(4):305-309.(in Chinese)
[18] Lee M Y, Do K M, Ganapathy H S, et al. Surfactant-aided supercritical carbon dioxide drying for photoresists to prevent pattern collapse [J]. Journal of Supercritical Fluids, 2007, 42(1):150-156.
[19] Liu C. Foundations of MEMS [M]. Translated by Huang Q A. Beijing: China Machine Press, 2007: 65-66.(in Chinese)