|Table of Contents|

[1] Wu Shiliang, Shen Dekui, Gao Shanyun, Zha Xiao, et al. Thermodynamic analysis and transition state study for pyrolysisof levoglucosan and glyceraldehyde through quantum simulation [J]. Journal of Southeast University (English Edition), 2013, 29 (3): 282-288. [doi:10.3969/j.issn.1003-7985.2013.03.010]
Copy

Thermodynamic analysis and transition state study for pyrolysisof levoglucosan and glyceraldehyde through quantum simulation()
左旋葡聚糖和甘油醛热解的热力学及过渡态量子模拟
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
29
Issue:
2013 3
Page:
282-288
Research Field:
Environmental Science and Engineering
Publishing date:
2013-09-20

Info

Title:
Thermodynamic analysis and transition state study for pyrolysisof levoglucosan and glyceraldehyde through quantum simulation
左旋葡聚糖和甘油醛热解的热力学及过渡态量子模拟
Author(s):
Wu Shiliang Shen Dekui Gao Shanyun Zha Xiao Xiao Rui
Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
吴石亮 沈德魁 高山韵 查晓 肖睿
东南大学能源热转换及其过程测控教育部重点实验室, 南京 210096
Keywords:
levoglucosan glyceraldehyde B3LYP quantum simulation biomass
左旋葡聚糖 甘油醛 B3LYP 量子模拟 生物质
PACS:
X511
DOI:
10.3969/j.issn.1003-7985.2013.03.010
Abstract:
In order to better understand the pyrolysis process of cellulose, the decomposition of levoglucosan and glyceraldehyde, which are important intermediate products of cellulose, are simulated by quantum simulation. Thermodynamic analysis of four possible reaction pathways for levoglucosan is conducted by quantum chemistry. The reaction process of glyceraldehyde is checked, and the intermediates and the activation energies of the process are given. The simulation results indicate that the three well-established chemical pathways for levoglucosan in literature can spontaneously occur within the pyrolysis temperature range from 500 to 1 000 K. However, the reaction pathway involving the formation of erythrose cannot be accepted since the free energy ΔG is estimated to be above zero during the pyrolysis process. Through the analysis of glyceraldehyde decomposition by the transition state theory, decarbonylation and dehydration may be the dominant pathways for glyceraldehyde decomposition. The quantum simulation for determining the chemical pathway of glyceraldehyde and levoglucosan can give a conceptual and methodological guide for searching possible chemical pathways of cellulose pyrolysis or other macromolecules in biomass.
为了更好地理解纤维素热解过程, 对纤维素热解中重要中间产物——左旋葡聚糖和甘油醛的反应过程进行了量子化学模拟.对左旋葡聚糖的4条可能反应路径进行了热力学分析, 并且对甘油醛的反应能垒进行了计算, 给出了其反应过程中的过渡态和活化能.计算结果表明, 文献提出的左旋葡聚糖的3条反应路径在500~1 000 K下均能自发进行, 但左旋葡聚糖生成四碳糖的反应不能自发进行, 因为该路径的自由能ΔG总是大于0.通过过渡态理论对甘油醛热解过程的分析表明, 脱羰反应和脱水反应是主要的反应路径.采用量子化学模拟甘油醛和左旋葡聚糖的分解路径为寻找纤维素及其他生物质大分子的热解反应路径提供了理念和方法上指导.

References:

[1] McKendry P. Energy production from biomass(part 1): overview of biomass[J]. Bioresource Technology, 2002, 83(1): 37-46.
[2] Yang H, Yan R, Chen H, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel, 2007, 86(12/13): 1781-1788.
[3] Shen D, Gu S. The mechanism for thermal decomposition of cellulose and its main products[J]. Bioresource Technology, 2009, 100(24): 6496-6504.
[4] Luo Z, Wang S, Liao Y, et al. Mechanism study of cellulose rapid pyrolysis[J]. Industrial and Engineering Chemistry Research, 2004, 43(18): 5605-5610.
[5] Kawamoto H, Murayama M, Saka S. Pyrolysis behavior of levoglucosan as an intermediate in cellulose pyrolysis: polymerization into polysaccharide as a key reaction to carbonized product formation[J]. Journal of Wood Science, 2003, 49(5): 469-473.
[6] Li S, Lyons-Hart J, Banyasz J, et al. Real-time evolved gas analysis by FTIR method: an experimental study of cellulose pyrolysis[J]. Fuel, 2001, 80(12): 1809-1817.
[7] Bradbury A G W, Sakai Y, Shafizadeh F. A kinetic model for pyrolysis of cellulose[J]. Journal of Applied Polymer Science, 1979, 23(11): 3271-3280.
[8] Shafizadeh F, Lai Y Z. Thermal degradation of 1, 6-anhydro-β-D-glucopyranose[J]. The Journal of Organic Chemistry, 1972, 37(2): 278-284.
[9] Vasiliou A G, Nimlos M R, Daily J W, et al. Thermal decomposition of furan generates propargyl radicals[J]. The Journal of Physical Chemistry A, 2009, 113(30): 8540-8547.
[10] Branca C, Galgano A, Blasi C, et al. H2SO4-catalyzed pyrolysis of corncobs[J]. Energy and Fuels, 2011, 25(1): 359-369.
[11] Branca C, Di Blasi C, Galgano A. Pyrolysis of corncobs catalyzed by zinc chloride for furfural production[J]. Industrial and Engineering Chemistry Research, 2010, 49(20): 9743-9752.
[12] Hohenberg P, Kohn W. Inhomogeneous electron gas[J]. Physical Review, 1964, 136(3B): B864-B871.
[13] Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Physical Review B, 1988, 37(2): 785-789.
[14] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 03[R]. Pittsburgh, PA, USA: Gaussian, Inc, 2003.
[15] Curtiss L A, Raghavachari K, Redfern P C, et al. Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation[J]. Journal of Chemical Physics, 1997, 106(3): 1063-1079.
[16] Glassner S, Pierce Ⅲ A R. Gas chromatographic analysis of products from controlled application of heat to paper and levoglucosan[J]. Analytical Chemistry, 1965, 37(4): 525-527.
[17] Smrcok L, Sladkovicova M, Langer V, et al. On hydrogen bonding in 1, 6-anhydro-β-D-glucopyranose(levoglucosan): X-ray and neutron diffraction and DFT study[J]. Acta Crystallographica Section B: Structural Science, 2006, 62(5): 912-918.
[18] Pictet A, Sarasin J. Distillation of cellulose and starch in vacuo[J]. Helv Chim Acta, 1918, 1: 87-96.
[19] Kawamoto H, Morisaki H, Saka S. Secondary decomposition of levoglucosan in pyrolytic production from cellulosic biomass[J]. Journal of Analytical and Applied Pyrolysis, 2009, 85(1/2): 247-251.
[20] Ball R, McIntosh A, Brindley J. Feedback processes in cellulose thermal decomposition: implications for fire-retarding strategies and treatments[J]. Combustion Theory and Modelling, 2004, 8(2): 281-291.
[21] Heyns K, Klier M. Bräunungsreaktionen und fragmentierungen von kohlenhydraten: Teil Ⅳ. Vergleich der flüchtigen abbauprodukte bei der pyrolyse von mono-, oligo-und polysacchariden[J]. Carbohydrate Research, 1968, 6(4): 436-448.

Memo

Memo:
Biographies: Wu Shiliang(1990—), male, graduate; Xiao Rui(corresponding author), male, doctor, professor, ruixiao@seu.edu.cn.
Foundation item: The National High Technology Research and Development Program of China(863 Program)(No.2012AA051801).
Citation: Wu Shiliang, Shen Dekui, Gao Shanyun, et al. Thermodynamic analysis and transition state study for pyrolysis of levoglucosan and glyceraldehyde through quantum simulation[J].Journal of Southeast University(English Edition), 2013, 29(3):282-288.[doi:10.3969/j.issn.1003-7985.2013.03.010]
Last Update: 2013-09-20