[1] McKendry P. Energy production from biomass(part 1): overview of biomass[J]. Bioresource Technology, 2002, 83(1): 37-46.
[2] Yang H, Yan R, Chen H, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel, 2007, 86(12/13): 1781-1788.
[3] Shen D, Gu S. The mechanism for thermal decomposition of cellulose and its main products[J]. Bioresource Technology, 2009, 100(24): 6496-6504.
[4] Luo Z, Wang S, Liao Y, et al. Mechanism study of cellulose rapid pyrolysis[J]. Industrial and Engineering Chemistry Research, 2004, 43(18): 5605-5610.
[5] Kawamoto H, Murayama M, Saka S. Pyrolysis behavior of levoglucosan as an intermediate in cellulose pyrolysis: polymerization into polysaccharide as a key reaction to carbonized product formation[J]. Journal of Wood Science, 2003, 49(5): 469-473.
[6] Li S, Lyons-Hart J, Banyasz J, et al. Real-time evolved gas analysis by FTIR method: an experimental study of cellulose pyrolysis[J]. Fuel, 2001, 80(12): 1809-1817.
[7] Bradbury A G W, Sakai Y, Shafizadeh F. A kinetic model for pyrolysis of cellulose[J]. Journal of Applied Polymer Science, 1979, 23(11): 3271-3280.
[8] Shafizadeh F, Lai Y Z. Thermal degradation of 1, 6-anhydro-β-D-glucopyranose[J]. The Journal of Organic Chemistry, 1972, 37(2): 278-284.
[9] Vasiliou A G, Nimlos M R, Daily J W, et al. Thermal decomposition of furan generates propargyl radicals[J]. The Journal of Physical Chemistry A, 2009, 113(30): 8540-8547.
[10] Branca C, Galgano A, Blasi C, et al. H2SO4-catalyzed pyrolysis of corncobs[J]. Energy and Fuels, 2011, 25(1): 359-369.
[11] Branca C, Di Blasi C, Galgano A. Pyrolysis of corncobs catalyzed by zinc chloride for furfural production[J]. Industrial and Engineering Chemistry Research, 2010, 49(20): 9743-9752.
[12] Hohenberg P, Kohn W. Inhomogeneous electron gas[J]. Physical Review, 1964, 136(3B): B864-B871.
[13] Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Physical Review B, 1988, 37(2): 785-789.
[14] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 03[R]. Pittsburgh, PA, USA: Gaussian, Inc, 2003.
[15] Curtiss L A, Raghavachari K, Redfern P C, et al. Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation[J]. Journal of Chemical Physics, 1997, 106(3): 1063-1079.
[16] Glassner S, Pierce Ⅲ A R. Gas chromatographic analysis of products from controlled application of heat to paper and levoglucosan[J]. Analytical Chemistry, 1965, 37(4): 525-527.
[17] Smrcok L, Sladkovicova M, Langer V, et al. On hydrogen bonding in 1, 6-anhydro-β-D-glucopyranose(levoglucosan): X-ray and neutron diffraction and DFT study[J]. Acta Crystallographica Section B: Structural Science, 2006, 62(5): 912-918.
[18] Pictet A, Sarasin J. Distillation of cellulose and starch in vacuo[J]. Helv Chim Acta, 1918, 1: 87-96.
[19] Kawamoto H, Morisaki H, Saka S. Secondary decomposition of levoglucosan in pyrolytic production from cellulosic biomass[J]. Journal of Analytical and Applied Pyrolysis, 2009, 85(1/2): 247-251.
[20] Ball R, McIntosh A, Brindley J. Feedback processes in cellulose thermal decomposition: implications for fire-retarding strategies and treatments[J]. Combustion Theory and Modelling, 2004, 8(2): 281-291.
[21] Heyns K, Klier M. Bräunungsreaktionen und fragmentierungen von kohlenhydraten: Teil Ⅳ. Vergleich der flüchtigen abbauprodukte bei der pyrolyse von mono-, oligo-und polysacchariden[J]. Carbohydrate Research, 1968, 6(4): 436-448.