|Table of Contents|

[1] Zhang Chunwei, Zhao Weiwei, Bi Kedong, Yong GuoqingGao Xuesong, et al. Improvement of pump-probe optical measurement techniqueusing double moving stages [J]. Journal of Southeast University (English Edition), 2013, 29 (4): 414-418. [doi:10.3969/j.issn.1003-7985.2013.04.011]
Copy

Improvement of pump-probe optical measurement techniqueusing double moving stages()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
29
Issue:
2013 4
Page:
414-418
Research Field:
Energy and Power Engineering
Publishing date:
2013-12-20

Info

Title:
Improvement of pump-probe optical measurement techniqueusing double moving stages
Author(s):
Zhang Chunwei Zhao Weiwei Bi Kedong Yong GuoqingGao Xuesong Wang Jianli Chen Yunfei
Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
Keywords:
femtosecond laser transient thermoreflectance double moving stages interfacial thermal conductance
PACS:
TK39
DOI:
10.3969/j.issn.1003-7985.2013.04.011
Abstract:
In order to improve the measurement precision and increase the reliability of the femtosecond laser transient thermoreflectance system, the relative optical path difference between pump and probe beams is prolonged, which can improve the fitting accuracy of the experimental data to the theoretical model. A modified experimental setup is devised with the pump path intercalated a moving stage identical to the one in the probe path, which extends the optical path difference of the probe beam relative to the pump beam from 4 to 8 ns. The measured results indicate that the uncertainty from the misalignment and divergence of both beams can be ignored when the last 4 ns experimental data are connected with those of the first 4 ns smoothly. The as-obtained thermal conductance of Al/Si and Cr/Si interfaces agrees well with the reported experimental values, which verifies the reliability of this modified version of this measurement.

References:

[1] Cahill D G. Thermal conductivity measurement from 30 to 750 K: the 3ω method[J]. Rev Sci Instrum, 2002, 73(10): 802-808.
[2] Raudzis C E, Schatz F, Wharam D. Extending the 3ω method for thin-film analysis to high frequencies [J]. J Appl Phys, 2003, 93(10): 6050-6055.
[3] Cahill D G, Bullen A, Lee S M. Interface thermal conductance and the thermal conductivity of multilayer thin films [J]. High Temp High Press, 2000, 32(2): 135-142.
[4] Swartz E T, Pohl R O. Thermal-boundary resistance [J]. Rev Mod Phys, 1989, 61(3): 605-668.
[5] Rosencwaig A, Opsal J, Smith W L, et al. Detection of thermal waves through optical reflectance [J]. Appl Phys Lett, 1985, 46(11): 1013-1015.
[6] Paddock C A, Eesley G L. Transient thermoreflectance from thin metal-films [J]. J Appl Phys, 1986, 60(1): 285-290.
[7] Hostetler J L, Smith A N, Czajkowsky D M, et al. Measurement of the electron-phonon coupling factor dependence on film thickness and grain size in Au, Cr, and Al [J]. Applied Opt, 1999, 38(16): 3614-3620.
[8] Wang H D, Ma W G, Guo Z Y, et al. Measurements of electron-phonon coupling factor and interfacial thermal resistance of metallic nano-films using a transient thermoreflectance technique [J]. Chinese Phys B, 2011, 20(4):040701-1-040701-8.
[9] Schmidt A, Chiesa M, Chen X Y, et al. An optical pump-probe technique for measuring the thermal conductivity of liquids [J]. Rev Sci Instrum, 2008, 79(6):064902-1-064902-5.
[10] Chiritescu C, Cahill D G, Nguyen N, et al. Ultralow thermal conductivity in disordered, layered WSe2 crystals [J]. Science, 2007, 315(5810): 351-353.
[11] Zhu L D, Sun F Y, Zhu J, et al. Nano-metal film thermal conductivity measurement by using the femtosecond laser pump and probe method [J]. Chinese Phys Lett, 2012, 29(6):066301-1-066301-4.
[12] Norris P M, Smoyer J L, Duda J C, et al. Prediction and measurement of thermal transport across interfaces between isotropic solids and graphitic materials[J]. Journal of Heat Transfer, 2012, 134(2):020910-1-020910-7.
[13] Stoner R J, Maris H J. Kapitza conductance and heat-flow between solids at temperatures from 50 to 300 K [J]. Phys Rev B, 1993, 48(22): 16373-16387.
[14] Smith A N, Hostetler J L, Norris P M. Thermal boundary resistance measurements using a transient thermoreflectance technique [J]. Microscale Thermophys Eng, 2000, 4(1): 51-60.
[15] Gengler J J, Roy S, Jones J G, et al. Two-color time-domain thermoreflectance of various metal transducers with an optical parametric oscillator [J]. Meas Sci Technol, 2012, 23(5):055205-1-055205-8.
[16] Capinski W S, Maris H J. Improved apparatus for picosecond pump-and-probe optical measurements [J]. Rev Sci Instrum, 1996, 67(8): 2720-2726.
[17] Taketoshi N, Baba T, Ono A. Electrical delay technique in the picosecond thermoreflectance method for thermophysical property measurements of thin films [J]. Rev Sci Instrum, 2005, 76(9):094903-1-094903-8.
[18] Zhang C W, Bi K D, Wang J L, et al. Measurement of thermal boundary conductance between metal and dielectric materials using femtosecond laser transient thermoreflectance technique[J]. Sci China Ser E, 2012, 55(4): 1044-1049.
[19] Stevens R J, Smith A N, Norris P M. Signal analysis and characterization of experimental setup for the transient thermoreflectance technique [J]. Rev Sci Instrum, 2006, 77(8):084901-1-084901-8.
[20] Hopkins P E, Serrano J R, Phinney L M A F, et al. Criteria for cross-plane dominated thermal transport in multilayer thin film systems during modulated laser heating [J]. Journal of Heat Transfer, 2010, 132(8):081302-1-081302-10.
[21] Hopkins P E, Hattar K, Beechem, T, et al. Reduction in thermal boundary conductance due to proton implantation in silicon and sapphire [J]. Appl Phys Lett, 2011, 98(23):231901-1-231901-3.
[22] Hopkins P E, Phinney L M, Serrano J R, et al. Effects of surface roughness and oxide layer on the thermal boundary conductance at aluminum/silicon interfaces [J]. Phys Rev B, 2010, 82(8):085307-1-085307-5.
[23] Hopkins P E, Norris P M, Thermal boundary conductance response to a change in Cr/Si interfacial properties [J]. Appl Phys Lett, 2006, 89(13):131909-1-131909-3.
[24] Qiu T Q, Tien C L. Heat-transfer mechanisms during short-pulse laser-heating of metals [J]. Journal of Heat Transfer, 1993, 115(4): 835-841.
[25] Cahill D G. Analysis of heat flow in layered structures for time-domain thermoreflectance [J]. Rev Sci Instrum, 2004, 75(12): 5119-5122.
[26] Schmidt A J, Chen X Y, Chen G. Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump-probe transient thermoreflectance [J]. Rev Sci Instrum, 2008, 79(11):114902-1-114902-9.
[27] Stevens R J, Smith A N, Norris P M. Measurement of thermal boundary conductance of a series of metal-dielectric interfaces by the transient thermoreflectance technique[J]. Journal of Heat Transfer, 2005, 127(3): 315-322.

Memo

Memo:
Biographies: Zhang Chunwei(1975—), male, graduate; Chen Yunfei(corresponding author), male, doctor, professor, yunfeichen@seu.edu.cn.
Foundation items: The National Basic Research Program of China(973 Program)(No.2011CB707605), the National Natural Science Foundation of China(No.51205061, 50925519, 51106029), the Natural Science Foundation of Jiangsu Province(No.BK2012340), the Ph.D. Programs Foundation of Ministry of Education of China(No.20110092120006).
Citation: Zhang Chunwei, Zhao Weiwei, Bi Kedong, et al. Improvement of pump-probe optical measurement technique using double moving stages[J].Journal of Southeast University(English Edition), 2013, 29(4):414-418.[doi:10.3969/j.issn.1003-7985.2013.04.011]
Last Update: 2013-12-20