|Table of Contents|

[1] Shi Guogang, Xiang Qiaojun, Guo Jianhua, Zhang Hongxin, et al. Effect of aggregation intervalon vehicular traffic flow heteroscedasticity [J]. Journal of Southeast University (English Edition), 2013, 29 (4): 445-449. [doi:10.3969/j.issn.1003-7985.2013.04.017]
Copy

Effect of aggregation intervalon vehicular traffic flow heteroscedasticity()
时间汇集间隔对交通流异方差性的影响
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
29
Issue:
2013 4
Page:
445-449
Research Field:
Traffic and Transportation Engineering
Publishing date:
2013-12-20

Info

Title:
Effect of aggregation intervalon vehicular traffic flow heteroscedasticity
时间汇集间隔对交通流异方差性的影响
Author(s):
Shi Guogang1 Xiang Qiaojun1 Guo Jianhua2 Zhang Hongxin2
1 School of Transportation, Southeast University, Nanjing 210096, China
2Intelligent Transportation System Research Center, Southeast University, Nanjing 210096, China
史国刚1 项乔君1 郭建华2 张宏新2
1东南大学交通学院, 南京 210096; 2东南大学智能运输系统研究中心, 南京 210096
Keywords:
heteroscedasticity traffic flow autoregressive integrated moving average(ARIMA) residual
异方差性 交通流 ARIMA 残差
PACS:
U491
DOI:
10.3969/j.issn.1003-7985.2013.04.017
Abstract:
The effect of the aggregation interval on vehicular traffic flow heteroscedasticity is investigated using real-world traffic flow data collected from the motorway system in the United Kingdom. 30 traffic flow series are generated using 30 aggregation intervals ranging from 1 to 30 min at 1 min increment, and autoregressive integrated moving average(ARIMA)models are constructed and applied in these series, generating 30 residual series. Through applying the portmanteau Q-test and the Lagrange multiplier(LM)test in the residual series from the ARIMA models, the heteroscedasticity in traffic flow series is investigated. Empirical results show that traffic flow is heteroscedastic across these selected aggregation intervals, and longer aggregation intervals tend to cancel out the noise in the traffic flow data and hence reduce the heteroscedasticity in traffic flow series. The above findings can be utilized in the development of reliable and robust traffic management and control systems.
依托从英国快速路系统中采集到的实际交通流数据, 研究了时间汇集间隔对交通流异方差性的影响.使用1~30 min共30种时间汇集间隔, 生成了30个实际交通流数据序列, 确定并估计了相应的ARIMA模型, 计算后得到30个交通流量残差序列.针对不同汇集间隔下的ARIMA模型残差序列, 应用portmanteau Q检验和LM(Lagrange multiplier)检验, 分析了交通流量序列的异方差性.实证结果表明:交通流量序列在选定的30个汇集间隔都具有显著的异方差性;较长的时间汇集间隔可以消减交通流量序列中的噪声, 从而减弱交通流异方差性的程度.研究结果有助于开发具有较高可靠性和鲁棒性的交通管理和控制系统.

References:

[1] Karlaftis M G, Vlahogianni E I. Memory properties and fractional integration in transportation time series [J]. Transportation Research Part C, 2009, 17(4): 444-453.
[2] Guo J H, Williams B M. Real time short term traffic speed level forecasting and uncertainty quantification using layered Kalman filters [J]. Transportation Research Record, 2010, 2175: 28-37.
[3] Sohn K, Kim D. Statistical model for forecasting link travel time variability [J]. ASCE Journal of Transportation Engineering, 2009, 135(7): 440-453.
[4] Yang M L, Liu Y G, You Z S. The reliability of travel time forecasting [J]. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(1): 162-171.
[5] Tsekeris T, Stathopoulos A. Short-term prediction of urban traffic variability: stochastic volatility modeling approach [J]. ASCE Journal of Transportation Engineering, 2010, 136(7): 606-613.
[6] Guo J H, Huang W, Williams B M. Integrated heteroscedasticity test for vehicular traffic condition series [J]. ASCE Journal of Transportation Engineering, 2012, 138(9): 1161-1170.
[7] Guo J H, Williams B M, Smith B L. Data collection time interval for stochastic short-term traffic flow forecasting [J]. Transportation Research Record, 2008, 2024: 18-26.
[8] Smith B L, Ulmer J M. Freeway traffic flow rate measurement: investigation into impact of measurement time interval [J]. ASCE Journal of Transportation Engineering, 2003, 129(3): 223-229.
[9] Guo J H, Huang W, Wei Y, et al. Effect of time interval on speed estimation using single loop detectors [J]. KSCE Journal of Civil Engineering, 2013, 17(5): 1130-1138.
[10] TRB. Highway capacity manual 2000 [R].Washington: Transportation Research Board, 2000.
[11] Box G E P, Jenkins G M, Reinsel G C. Time series analysis: forecasting and control [M]. 3rd ed. Upper Saddle River, NJ, USA: Prentice-Hall, 1994.
[12] SAS Institute, Inc. SAS OnlineDoc version 8 [M]. Cary, NC, USA: SAS Institute, 2000.
[13] Edie L C. Discussion of traffic stream measurements and definitions [C]//Proc of 2nd International Symposium on the Theory of Traffic. Paris, France, 1963: 139-154.
[14] Williams B M, Hoel L A. Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results [J]. ASCE Journal of Transportation Engineering, 2003, 129(6): 664-672.

Memo

Memo:
Biographies: Shi Guogang(1975—), male, graduate; Xiang Qiaojun(corresponding author), male, doctor, professor, xqj@seu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.71101025), the National Key Technology R&D Program of China during the 12th Five-Year Plan Period(No.2011BAK21B01), the Doctoral Programs Foundation of the Ministry of Education of China(No.20100092110037), the Fundamental Research Funds for the Central Universities.
Citation: Shi Guogang, Xiang Qiaojun, Guo Jianhua, et al. Effect of aggregation interval on vehicular traffic flow heteroscedasticity[J].Journal of Southeast University(English Edition), 2013, 29(4):445-449.[doi:10.3969/j.issn.1003-7985.2013.04.017]
Last Update: 2013-12-20