|Table of Contents|

[1] Deng Yangbao, Deng Shuguang, Xiong Cuixiu, et al. Measurement of spatiotemporal characteristics of femtosecondlaser pulses by a modified single-shot autocorrelation [J]. Journal of Southeast University (English Edition), 2014, 30 (4): 411-415. [doi:10.3969/j.issn.1003-7985.2014.04.002]
Copy

Measurement of spatiotemporal characteristics of femtosecondlaser pulses by a modified single-shot autocorrelation()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
30
Issue:
2014 4
Page:
411-415
Research Field:
Electronic Science and Engineering
Publishing date:
2014-12-31

Info

Title:
Measurement of spatiotemporal characteristics of femtosecondlaser pulses by a modified single-shot autocorrelation
Author(s):
Deng Yangbao1 2 Deng Shuguang2 Xiong Cuixiu2 Zhang Guangfu2 Tian Ye2 Shen Lianfeng1
1National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China
2College of Communication and Electronic Engineering, Hunan City University, Yiyang 413000, China
Keywords:
spatiotemporal characteristics modified single-shot autocorrelation femtosecond laser pulses ultrafast laser technology
PACS:
TN2
DOI:
10.3969/j.issn.1003-7985.2014.04.002
Abstract:
To overcome the shortcomings of the single-shot autocorrelation(SSA)where only one pulse width is obtained when the SSA is applied to measure the pulse width of ultrashort laser pulses, a modified SSA for measuring the spatiotemporal characteristics of ultrashort laser pulses at different spatial positions is proposed. The spatiotemporal characteristics of femtosecond laser pulses output from the Ti:sapphire regenerative amplifier system are experimentally measured by the proposed method. It was found that the complex spatial characteristics are measured accurately. The pulse widths at different spatial positions are various, which obey the Gaussian distribution. The pulse width at the same spatial position becomes narrow with the increase in input average power when femtosecond laser pulses pass through a carbon disulfide(CS2)nonlinear medium. The experimental results verify that the proposed method is valid for measuring the spatiotemporal characteristics of ultrashort laser pulses at different spatial positions.

References:

[1] Ferrari F, Calegari F, Lucchini M, et al. High-energy isolated attosecond pulses generated by above-saturation few-cycle fields[J]. Nature Photonics, 2010, 4(12): 875-879.
[2] Baker S, Walmsley I A, Tisch J W G, et al. Femtosecond to attosecond light pulses from a molecular modulator[J]. Nature Photonics, 2011, 5(11): 664-671.
[3] Sun X L, Skillman D R, Hoffman E D, et al. Free space laser communication experiments from Earth to the Lunar Reconnaissance orbiter in lunar orbit[J]. Optics Express, 2013, 21(2): 1865-1871.
[4] Cairns R A, Bingham R, Norreys P, et al. Laminar shocks in high power laser plasma interactions[J]. Physics of Plasmas, 2014, 21(2): 022112.
[5] Shang J Z, Ma L, Li J W, et al. Femtosecond pump-probe spectroscopy of graphene oxide in water[J]. Journal of Physics D: Applied Physics, 2014, 47(9): 094008.
[6] Träger F. Handbook of lasers and optics[M]. Berlin: Springer, 2007:962-978.
[7] Tsuchiya Y. Advances in streak camera instrumentation for the study of biological and physical processes[J]. IEEE Journal of Quantum Electronics, 1984, 20(12): 1516-1528.
[8] Kolliopoulos G, Tzallas P, Bergues B, et al. Single-shot autocorrelator for extreme-ultraviolet radiation[J]. Journal of Optical Society of America B, 2014, 31(5): 926-938.
[9] Moshammer R, Pfeifer T, Rudenko A, et al. Second-order autocorrelation of XUV FEL pulses via time resolved two-photon single ionization of He[J]. Optics Express, 2011, 19(22): 21698-21706.
[10] Wei Y Z, Howard S, Straub A, et al. High sensitivity third-order autocorrelation measurement by intensity modulation and third harmonic detection[J]. Optics Letters, 2011, 36(12): 2372-2374.
[11] Deng Y B, Yang H, Tang M, et al. Experimental research on measuring the fine structure of long pulse in time domain by synchronized ultrashort pulse[J]. Optics Communications, 2011, 284(3): 847-851.
[12] Ma J, Yuan P, Wang Y Z, et al. Single-shot cross-correlator using a long-wavelength sampling pulse[J]. Optics Letters, 2011, 36(6): 978-980.
[13] Wilcox D E, Fuller D F, Ogilvie J P. Fast second-harmonic generation frequency-resolved optical gating using only a pulse shaper[J]. Optics Letters, 2013, 38(16): 2980-2983.
[14] Calò C, Schmeckebier H, Merghem K, et al. Frequency resolved optical gating characterization of sub-ps pulses from single-section InAs/InP quantum dash based mode-locked lasers[J]. Optics Express, 2014, 22(2): 1742-1748.
[15] Pasquazi A, Peccianti M, Azaña J, et al. FLEA: Fresnel-limited extraction algorithm applied to spectral phase interferometry for direct field reconstruction(SPIDER)[J]. Optics Express, 2013, 21(5): 5743-5758.
[16] Tsermaa B, Yang B K, Kim J S, et al. Crystal-dithering method applied to spectral phase interferometry for direct electric-field reconstruction(SPIDER)for sensitivity enhancement of the pulse phase measurement[J]. Optics Communications, 2011, 284(7): 1955-1958.
[17] Goodman J W. Introduction to Fourier optics[M]. 3rd ed. Englewood: Roberts & Company, 2005: 28-55.
[18] Deng Y B, Fu X Q, Tan C, et al. Experimental investigation of spatiotemporal evolution of femtosecond laser pulses during small-scale self-focusing[J]. Applied Physics B, 2014, 114(3): 449-454.

Memo

Memo:
Biographies: Deng Yangbao(1983—), male, doctor, lecturer; Shen Lianfeng(corresponding author), male, professor, lfshen@seu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.61171081, No.61471164), the Natural Science Foundation of Hunan Province(No.14JJ6043).
Citation: Deng Yangbao, Deng Shuguang, Xiong Cuixiu, et al.Measurement of spatiotemporal characteristics of femtosecond laser pulses by a modified single-shot autocorrelation[J].Journal of Southeast University(English Edition), 2014, 30(4):411-415.[doi:10.3969/j.issn.1003-7985.2014.04.002]
Last Update: 2014-12-20