[1] Tarighat A, Bagheri R, Sayed A H. Compensation schemes and performance analysis of IQ imbalances in OFDM receivers[J]. IEEE Transactions on Signal Processing, 2005, 53(8): 3257-3268.
[2] Razavi B, Behzad R. RF microelectronics[M]. New Jersey: Prentice Hall, 1998.
[3] Abidi A A. Direct-conversion radio transceivers for digital communications[J]. IEEE Journal of Solid-State Circuits, 1995, 30(12): 1399-1410.
[4] Tarighat A, Sayed A H. Joint compensation of transmitter and receiver impairments in OFDM systems[J]. IEEE Transactions on Wireless Communications, 2007, 6(1): 240-247.
[5] Valkama M, Renfors M, Koivunen V. Advanced methods for I/Q imbalance compensation in communication receivers[J]. IEEE Transactions on Signal Processing, 2001, 49(10): 2335-2344.
[6] Xing G, Shen M, Liu H. Frequency offset and I/Q imbalance compensation for direct-conversion receivers[J]. IEEE Transactions on Wireless Communications, 2005, 4(2): 673-680.
[7] Tubbax J, Come B, Van der Perre L, et al. Compensation of IQ imbalance and phase noise in OFDM systems[J]. IEEE Transactions on Wireless Communications, 2005, 4(3): 872-877.
[8] Inamori M, Bostamam A, Sanada Y, et al. IQ imbalance compensation scheme in the presence of frequency offset and dynamic DC offset for a direct conversion receiver[J]. IEEE Transactions on Wireless Communications, 2009, 8(5): 2214-2220.
[9] Lin H, Yamashita K. Subcarrier allocation based compensation for carrier frequency offset and I/Q imbalances in OFDM systems[J]. IEEE Transactions on Wireless Communications, 2009, 8(1): 18-23.
[10] Tandur D, Moonen M. Joint adaptive compensation of transmitter and receiver IQ imbalance under carrier frequency offset in OFDM-based systems[J]. IEEE Transactions on Signal Processing, 2007, 55(11): 5246-5252.
[11] Feigin J, Brady D. Joint transmitter/receiver I/Q imbalance compensation for direct conversion OFDM in packet-switched multipath environments[J]. IEEE Transactions on Signal Processing, 2009, 57(11): 4588-4593.
[12] Narasimhan B, Narayanan S, Minn H, et al. Reduced-complexity baseband compensation of joint Tx/Rx I/Q imbalance in mobile MIMO-OFDM[J]. IEEE Transactions on Wireless Communications, 2010, 9(5): 1720-1728.
[13] Minn H, Munoz D. Pilot designs for channel estimation of MIMO OFDM systems with frequency-dependent I/Q imbalances[J]. IEEE Transactions on Communications, 2010, 58(8): 2252-2264.
[14] Gregorio F, Cousseau J, Werner S, et al. Compensation of IQ imbalance and transmitter nonlinearities in broadband MIMO-OFDM[C]//2011 IEEE International Symposium on Circuits and Systems. Rio de Janeiro, Brazil, 2011: 2393-2396.
[15] Beheshti M, Omidi M J, Doost-Hoseini A M. Joint compensation of transmitter and receiver IQ imbalance for MIMO-OFDM over doubly selective channels[J]. Wireless Personal Communications, 2013, 70(2): 537-559.
[16] Liu Z J, Sun D C, Wang J L, et al. Impact and compensation of I/Q imbalance on channel reciprocity of time-division-duplexing multiple-input multiple-output systems[J]. IET Communications, 2013, 7(7): 663-672.
[17] Manasseh E, Ohno S, Yamamoto T. Efficient training design for estimation of channel, CFO, and receiver I/Q imbalance in MIMO-OFDM systems[C]//2013 13th International Symposium on Communications and Information Technologies. Surat Thani, Thailand, 2013: 364-368.
[18] Deng J H, Hsieh H S, Feng K T. Low complexity I/Q imbalance and channel estimation techniques for MIMO OFDM systems[C]//2013 15th IEEE International Conference on Advanced Communication Technology. Pyeongchang, Korea, 2013: 238-243.
[19] Edfors O, Sandell M, Van de Beek J J, et al. OFDM channel estimation by singular value decomposition[J]. IEEE Transactions on Communications, 1998, 46(7): 931-939.