[1] Ren W, Zhang J, Jin J. The virtual tuning of an automatic shock absorber[J]. Journal of Mechanical Engineering Science, 2009, 223(11): 2655-2662.
[2] Polycarpou P C, Komodromos P, Polycarpou A C. A nonlinear impact model for simulating the use of rubber shock absorbers for mitigating the effects of structural pounding during earthquakes[J]. Earthquake Engineering & Structural Dynamics, 2013, 42(1): 81-100.
[3] Koylu H, Cinar A. The influences of worn shock absorber on ABS braking performance on rough road[J]. International Journal of Vehicle Design, 2011, 57(1): 84-101.
[4] Hu H S, Jiang X Z, Wang J, et al. Design, modeling, and controlling of a large-scale magnetorheological shock absorber under high impact load[J]. Journal of Intelligent Material Systems and Structures, 2012, 23(6): 635-645.
[5] Roundy S, Wright P K, Rabaey J. A study of low level vibrations as a power source for wireless sensor nodes[J]. Computer Communications, 2003, 26(11): 1131-1144.
[6] Fodor M G, Redfield R. The variable linear transmission for regenerative damping in vehicle suspension control[J]. Vehicle System Dynamics, 1993, 22(1): 1-20.
[7] Chen C, Liao W H. A self-sensing magnetorheological damper with power generation[J]. Smart Materials & Structures, 2012, 21(2): 025014.
[8] Choi K M, Jung H J, Lee H J, et al. Feasibility study of an MR damper-based smart passive control system employing an electromagnetic induction device[J]. Smart Materials & Structures, 2007, 16(6): 2323-2329.
[9] Sapiński B. Vibration power generator for a linear MR damper[J]. Smart Materials & Structures, 2010, 19(10): 105012.
[10] Suda Y, Nakadai S, Nakano K. Hybrid suspension system with skyhook control and energy regeneration[J]. Vehicle System Dynamics, 1998, 28(Sl): 619-634.
[11] Choi Y T, Wereley N M. Self-powered magnetorheological dampers[J]. Journal of Vibration and Acoustics, 2009, 131(4): 044501.
[12] Choi S B, Seong M S, Kim K. Vibration control of an electrorheological fluid-based suspension system with an energy regenerative mechanism[J]. Journal of Automobile Engineering, 2009, 223(4): 459-469.
[13] Aly A M, Zasso A, Resta F. On the dynamics of a very slender building under winds: response reduction using MR dampers with lever mechanism[J]. Structural Design of Tall and Special Buildings, 2011, 20(5): 539-551.
[14] Fang Z, Guo X, Xu L, et al. Experimental study of damping and energy regeneration characteristics of a hydraulic electromagnetic shock absorber[J]. Advances in Mechanical Engineering, 2013, 2013: 943528.
[15] Li C, Liang M, Wang Y X, et al. Vibration suppression using two-terminal flywheel. Part Ⅰ: modeling and characterization[J]. Journal of Vibration and Control, 2012, 18(8): 1096-1105.
[16] Li C, Zhu R, Liang M, et al. Integration of shock absorption and energy harvesting using a hydraulic rectifier[J]. Journal of Sound and Vibration, 2014, 333(17): 3904-3916.
[17] Li C, Liang M. Characterization and modeling of a novel electro-hydraulic variable two-terminal mass device[J]. Smart Materials & Structures, 2012, 21(2): 025004.
[18] Papageorgiou C, Houghton N E, Smith M C. Experimental testing and analysis of inerter devices[J]. ASME Journal of Dynamic Systems, Measurement, and Control, 2009, 131(1): 011001.
[19] Beh T C, Kato M, Imura T, et al. Automated impedance matching system for robust wireless power transfer via magnetic resonance coupling[J]. IEEE Transactions on Industrial Electronics, 2013, 60(9): 3689-3698.