|Table of Contents|

[1] Cai Di, Kan Yajing, Zhao Gutian, Wu Gensheng, et al. Adsorption and desorption behaviors of ssDNA moleculeson mica surface by surface forces apparatus [J]. Journal of Southeast University (English Edition), 2016, 32 (1): 45-50. [doi:10.3969/j.issn.1003-7985.2016.01.009]
Copy

Adsorption and desorption behaviors of ssDNA moleculeson mica surface by surface forces apparatus()
利用表面力仪研究单链DNA在云母表面的吸附与解吸附特性
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
32
Issue:
2016 1
Page:
45-50
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2016-03-20

Info

Title:
Adsorption and desorption behaviors of ssDNA moleculeson mica surface by surface forces apparatus
利用表面力仪研究单链DNA在云母表面的吸附与解吸附特性
Author(s):
Cai Di, Kan Yajing, Zhao Gutian, Wu Gensheng, Si Wei, Tan Qiyan, Chen Yunfei
School of Mechanical Engineering, Southeast University, Nanjing 211189, China
蔡迪, 阚亚鲸, 赵古田, 伍根生, 司伟, 谭启檐, 陈云飞
东南大学机械工程学院, 南京211189
Keywords:
single-stranded DNA mica adsorption desorption competition effect surface forces apparatus
单链DNA 云母 吸附 解吸附 竞争效应 表面力仪
PACS:
O561.4
DOI:
10.3969/j.issn.1003-7985.2016.01.009
Abstract:
An approach for studying the adsorption and desorption behaviors of single-stranded DNA(ssDNA)molecules on the mica surface by the surface forces apparatus(SFA)is reported, which can be used to characterize the precise thickness, configuration and mechanical properties of ssDNA layers on the mica surface at a certain buffer solution. The formation of ssDNA layers is first studied by tuning the ssDNA concentrations, and the experimental results indicate that the ssDNA concentration of 100 ng/μL is ideal for forming a ssDNA monolayer structure on the mica surface, and the hardwall value measured to be 1.04 nm under this circumstance is regarded as the thickness of the ssDNA monolayer confined on mica. The desorption behavior of ssDNA molecules from the mica surface is further studied by observing and comparing different shapes of the force-distance curves under certain conditions. It is found that the desorption of ssDNA molecules from the mica surface occurs as the monovalent salts are added into the gap buffer. It is inferred that the competition effect between monovalent and divalent salts can induce the release of ssDNA from substrate. The results also reveal that 10 mmol/L monovalent salts(Na+)is sufficient for the desorption of ssDNA from mica. This work provides an applicable method to study the binding mechanism of ssDNA molecules on inorganic substrates.
利用表面力仪(SFA)研究了单链DNA分子在云母表面的吸附与解吸附特性, 获得了在特定缓冲液环境中, 云母表面吸附的单链DNA分子层的精确厚度、几何结构及力学特性.首先, 通过改变单链DNA的浓度, 研究了不同浓度条件下云母表面吸附的单链DNA分子层的几何结构.此外, 通过比较不同缓冲液中测得的力-距离曲线, 研究了单链DNA分子的解吸附行为.结果表明:当单链DNA浓度为100 ng/μL时, 其在云母表面吸附形成单分子层, 该单分子层的厚度约为1.04 nm;而当10 mmol/L的单价阳离子(Na+)加入到缓冲液中时, 原本吸附在云母表面的单链DNA分子发生了解吸附现象, 进一步分析表明, 单价阳离子与高价阳离子之间的竞争效应是引起单链DNA分子解吸附的根本原因.本研究为进一步研究单链DNA分子在无机基底表面的吸附机理提供了实用方法.

References:

[1] Bittner A M. Biomolecular rods and tubes in nanotechnology [J]. Naturwissenschaften, 2005, 92(2): 51-64. DOI:10.1007/s00114-004-0579-8.
[2] Woolley A T, Kelly R T. Deposition and characterization of extended single-stranded DNA molecules on surfaces [J]. Nano Letters, 2001, 1(7): 345-348.
[3] Hansma H G, Golan R, Hsieh W, et al. DNA condensation for gene therapy as monitored by atomic force microscopy [J]. Nucleic Acids Research, 1998, 26(10): 2481-2487.
[4] Stoltenberg R M, Woolley A T. DNA-templated nanowire fabrication [J]. Biomedical Microdevices, 2004, 6(2): 105-111. DOI:10.1023/B:BMMD.0000031746.46801.7d.
[5] Zhao F, Xu J, Liu S. Atomic force microscopy visualization of the DNA network and molecular morphological transition on a mica surface [J]. Thin Solid Films, 2008, 516(21): 7555-7559. DOI:10.1016/j.tsf.2008.05.030.
[6] Song Y, Li Z, Liu Z, et al. A novel strategy to construct a flat-lying DNA monolayer on a mica surface [J]. The Journal of Physical Chemistry B, 2006, 110(22): 10792-10798. DOI:10.1021/jp0564344.
[7] Pastré D, Hamon L, Landousy F, et al. Anionic polyelectrolyte adsorption on mica mediated by multivalent cations: a solution to DNA imaging by atomic force microscopy under high ionic strengths [J]. Langmuir, 2006, 22(15): 6651-6660. DOI:10.1021/la053387y.
[8] Maeda Y, Matsumoto T, Kawai T. Observation of single-and double-stranded DNA using non-contact atomic force microscopy [J]. Applied Surface Science, 1999, 140(3): 400-405.
[9] Wang H, Lin J, Wang C, et al. Evaluation of the radial deformability of poly(dG)-poly(dC)DNA and G4-DNA using vibrating scanning polarization force microscopy [J]. Langmuir, 2010, 26(10): 7523-7528. DOI:10.1021/la904329q.
[10] Li X, Sun J, Zhou X, et al. Height measurement of dsDNA and antibodies adsorbed on solid substrates in air by vibrating mode scanning polarization force microscopy [J]. Journal of Vacuum Science & Technology B, 2003, 21(3): 1070-1073. DOI:10.1116/1.1576399.
[11] Shapir E, Sagiv L, Borovok N, et al. High-resolution STM imaging of novel single G4-DNA molecules [J]. The Journal of Physical Chemistry B, 2008, 112(31): 9267-9269. DOI:10.1021/jp803478f.
[12] Dey S, Pethkar S, Adyanthaya S D, et al. New approach towards imaging λ-DNA using scanning tunneling microscopy/spectroscopy(STM/STS)[J]. Bulletin of Materials Science, 2008, 31(3): 309-312. DOI:10.1007/s12034-008-0049-6.
[13] Hamai C, Tanaka H, Kawai T. Surface structure characterization of DNA oligomer on Cu(111)surface using low temperature scanning tunneling microscopy [J]. Journal of Vacuum Science & Technology B, 1999, 17(4): 1313-1316.
[14] Rojas O J, Ernstsson M, Neuman R D, et al. X-ray photoelectron spectroscopy in the study of polyelectrolyte adsorption on mica and cellulose [J]. The Journal of Physical Chemistry B, 2000, 104(43): 10032-10042.
[15] Herne T M, Tarlov M J. Characterization of DNA probes immobilized on gold surfaces [J]. Journal of the American Chemical Society, 1997, 119(38): 8916-8920. DOI:10.1021/ja9719586.
[16] Israelachvili J, Min Y, Akbulut M, et al. Recent advances in the surface forces apparatus(SFA)technique [J]. Reports on Progress in Physics, 2010, 73(3): 036601. DOI:10.1088/0034-4885/73/3/036601.
[17] Zhao G, Cai D, Wu G, et al. A study of structure and properties of molecularly thin methanol film using the modified surface forces apparatus [J]. Microscopy Research and Technique, 2014, 77(11): 851-856. DOI:10.1002/jemt.22425.
[18] Pincet F, Perez E, Bryant G, et al. Long-range attraction between nucleosides with short-range specificity: direct measurements [J]. Physical Review Letters, 1994, 73(20): 2780. DOI:10.1103/PhysRevLett.73.2780.
[19] Bezanilla M, Manne S, Laney D E, et al. Adsorption of DNA to mica, silylated mica, and minerals: characterization by atomic force microscopy [J]. Langmuir, 1995, 11(2): 655-659. DOI:10.1021/la00002a050.
[20] Lyubchenko Y, Shlyakhtenko L, Harrington R, et al. Atomic force microscopy of long DNA: imaging in air and under water [J]. Proceedings of the National Academy of Sciences, 1993, 90(6): 2137-2140.
[21] Hansma H G, Laney D E. DNA binding to mica correlates with cationic radius: assay by atomic force microscopy [J]. Biophysical Journal, 1996, 70(4): 1933-1939. DOI:10.1016/S0006-3495(96)79757-6.
[22] Thundat T, Allison D P, Warmack R J, et al. Atomic force microscopy of single- and double-stranded deoxyribonucleic acid [J]. Journal of Vacuum Science & Technology A, 1993, 11(4): 824-828.
[23] Hansma H G, Sinsheimer R L, Li M Q, et al. Atomic force microscopy of single-and double-stranded DNA [J]. Nucleic Acids Research, 1992, 20(14): 3585-3590.
[24] Hansma H G, Revenko I, Kim K, et al. Atomic force microscopy of long and short double-stranded, single-stranded and triple-stranded nucleic acids [J]. Nucleic Acids Research, 1996, 24(4): 713-720.
[25] Vesenka J, Guthold M, Tang C L, et al. Substrate preparation for reliable imaging of DNA molecules with the scanning force microscope [J]. Ultramicroscopy, 1992, 42: 1243-1249.
[26] Bustamante C, Guthold M, Zhu X, et al. Facilitated target location on DNA by individual Escherichia coli RNA polymerase molecules observed with the scanning force microscope operating in liquid [J]. Journal of Biological Chemistry, 1999, 274(24): 16665-16668.
[27] Wanunu M, Dadosh T, Ray V, et al. Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors.[J]. Nature Nanotechnology, 2010, 5(11): 807-814. DOI:10.1038/nnano.2010.202.
[28] Pastré D, Piétrement O, Fusil S, et al. Adsorption of DNA to mica mediated by divalent counterions: a theoretical and experimental study [J]. Biophysical Journal, 2003, 85(4): 2507-2518. DOI:10.1016/S0006-3495(03)74673-6.
[29] Sushko M L, Shluger A L, Rivetti C. Simple model for DNA adsorption onto a mica surface in 1∶1 and 2∶1 electrolyte solutions. [J]. Langmuir, 2006, 22(18): 7678-7688. DOI:10.1021/la060356.
[30] Zhao G, Guo W, Tan Q, et al. Force measurement between mica surfaces in electrolyte solution [J]. Journal of Southeast University(English Edition), 2013, 29(1): 57-61.

Memo

Memo:
Biographies: Cai Di(1990—), male, graduate; Chen Yunfei(corresponding author), male, doctor, professor, yunfeichen@seu.edu.cn.
Foundation items: The National Basic Research Program of China(973 Program)(No.2011CB707605), the Fundamental Research Funds for the Central Universities(No.2242015K42085), the Scientific Innovation Research of College Graduates in Jiangsu Province(No.KYLX-0100), the Research Start-Up Fund of Southeast University.
Citation: Cai Di, Kan Yajing, Zhao Gutian, et al. Adsorption and desorption behaviors of ssDNA molecules on mica surface by surface forces apparatus[J].Journal of Southeast University(English Edition), 2016, 32(1):45-50.DOI:10.3969/j.issn.1003-7985.2016.01.009.
Last Update: 2016-03-20