[1] Bittner A M. Biomolecular rods and tubes in nanotechnology [J]. Naturwissenschaften, 2005, 92(2): 51-64. DOI:10.1007/s00114-004-0579-8.
[2] Woolley A T, Kelly R T. Deposition and characterization of extended single-stranded DNA molecules on surfaces [J]. Nano Letters, 2001, 1(7): 345-348.
[3] Hansma H G, Golan R, Hsieh W, et al. DNA condensation for gene therapy as monitored by atomic force microscopy [J]. Nucleic Acids Research, 1998, 26(10): 2481-2487.
[4] Stoltenberg R M, Woolley A T. DNA-templated nanowire fabrication [J]. Biomedical Microdevices, 2004, 6(2): 105-111. DOI:10.1023/B:BMMD.0000031746.46801.7d.
[5] Zhao F, Xu J, Liu S. Atomic force microscopy visualization of the DNA network and molecular morphological transition on a mica surface [J]. Thin Solid Films, 2008, 516(21): 7555-7559. DOI:10.1016/j.tsf.2008.05.030.
[6] Song Y, Li Z, Liu Z, et al. A novel strategy to construct a flat-lying DNA monolayer on a mica surface [J]. The Journal of Physical Chemistry B, 2006, 110(22): 10792-10798. DOI:10.1021/jp0564344.
[7] Pastré D, Hamon L, Landousy F, et al. Anionic polyelectrolyte adsorption on mica mediated by multivalent cations: a solution to DNA imaging by atomic force microscopy under high ionic strengths [J]. Langmuir, 2006, 22(15): 6651-6660. DOI:10.1021/la053387y.
[8] Maeda Y, Matsumoto T, Kawai T. Observation of single-and double-stranded DNA using non-contact atomic force microscopy [J]. Applied Surface Science, 1999, 140(3): 400-405.
[9] Wang H, Lin J, Wang C, et al. Evaluation of the radial deformability of poly(dG)-poly(dC)DNA and G4-DNA using vibrating scanning polarization force microscopy [J]. Langmuir, 2010, 26(10): 7523-7528. DOI:10.1021/la904329q.
[10] Li X, Sun J, Zhou X, et al. Height measurement of dsDNA and antibodies adsorbed on solid substrates in air by vibrating mode scanning polarization force microscopy [J]. Journal of Vacuum Science & Technology B, 2003, 21(3): 1070-1073. DOI:10.1116/1.1576399.
[11] Shapir E, Sagiv L, Borovok N, et al. High-resolution STM imaging of novel single G4-DNA molecules [J]. The Journal of Physical Chemistry B, 2008, 112(31): 9267-9269. DOI:10.1021/jp803478f.
[12] Dey S, Pethkar S, Adyanthaya S D, et al. New approach towards imaging λ-DNA using scanning tunneling microscopy/spectroscopy(STM/STS)[J]. Bulletin of Materials Science, 2008, 31(3): 309-312. DOI:10.1007/s12034-008-0049-6.
[13] Hamai C, Tanaka H, Kawai T. Surface structure characterization of DNA oligomer on Cu(111)surface using low temperature scanning tunneling microscopy [J]. Journal of Vacuum Science & Technology B, 1999, 17(4): 1313-1316.
[14] Rojas O J, Ernstsson M, Neuman R D, et al. X-ray photoelectron spectroscopy in the study of polyelectrolyte adsorption on mica and cellulose [J]. The Journal of Physical Chemistry B, 2000, 104(43): 10032-10042.
[15] Herne T M, Tarlov M J. Characterization of DNA probes immobilized on gold surfaces [J]. Journal of the American Chemical Society, 1997, 119(38): 8916-8920. DOI:10.1021/ja9719586.
[16] Israelachvili J, Min Y, Akbulut M, et al. Recent advances in the surface forces apparatus(SFA)technique [J]. Reports on Progress in Physics, 2010, 73(3): 036601. DOI:10.1088/0034-4885/73/3/036601.
[17] Zhao G, Cai D, Wu G, et al. A study of structure and properties of molecularly thin methanol film using the modified surface forces apparatus [J]. Microscopy Research and Technique, 2014, 77(11): 851-856. DOI:10.1002/jemt.22425.
[18] Pincet F, Perez E, Bryant G, et al. Long-range attraction between nucleosides with short-range specificity: direct measurements [J]. Physical Review Letters, 1994, 73(20): 2780. DOI:10.1103/PhysRevLett.73.2780.
[19] Bezanilla M, Manne S, Laney D E, et al. Adsorption of DNA to mica, silylated mica, and minerals: characterization by atomic force microscopy [J]. Langmuir, 1995, 11(2): 655-659. DOI:10.1021/la00002a050.
[20] Lyubchenko Y, Shlyakhtenko L, Harrington R, et al. Atomic force microscopy of long DNA: imaging in air and under water [J]. Proceedings of the National Academy of Sciences, 1993, 90(6): 2137-2140.
[21] Hansma H G, Laney D E. DNA binding to mica correlates with cationic radius: assay by atomic force microscopy [J]. Biophysical Journal, 1996, 70(4): 1933-1939. DOI:10.1016/S0006-3495(96)79757-6.
[22] Thundat T, Allison D P, Warmack R J, et al. Atomic force microscopy of single- and double-stranded deoxyribonucleic acid [J]. Journal of Vacuum Science & Technology A, 1993, 11(4): 824-828.
[23] Hansma H G, Sinsheimer R L, Li M Q, et al. Atomic force microscopy of single-and double-stranded DNA [J]. Nucleic Acids Research, 1992, 20(14): 3585-3590.
[24] Hansma H G, Revenko I, Kim K, et al. Atomic force microscopy of long and short double-stranded, single-stranded and triple-stranded nucleic acids [J]. Nucleic Acids Research, 1996, 24(4): 713-720.
[25] Vesenka J, Guthold M, Tang C L, et al. Substrate preparation for reliable imaging of DNA molecules with the scanning force microscope [J]. Ultramicroscopy, 1992, 42: 1243-1249.
[26] Bustamante C, Guthold M, Zhu X, et al. Facilitated target location on DNA by individual Escherichia coli RNA polymerase molecules observed with the scanning force microscope operating in liquid [J]. Journal of Biological Chemistry, 1999, 274(24): 16665-16668.
[27] Wanunu M, Dadosh T, Ray V, et al. Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors.[J]. Nature Nanotechnology, 2010, 5(11): 807-814. DOI:10.1038/nnano.2010.202.
[28] Pastré D, Piétrement O, Fusil S, et al. Adsorption of DNA to mica mediated by divalent counterions: a theoretical and experimental study [J]. Biophysical Journal, 2003, 85(4): 2507-2518. DOI:10.1016/S0006-3495(03)74673-6.
[29] Sushko M L, Shluger A L, Rivetti C. Simple model for DNA adsorption onto a mica surface in 1∶1 and 2∶1 electrolyte solutions. [J]. Langmuir, 2006, 22(18): 7678-7688. DOI:10.1021/la060356.
[30] Zhao G, Guo W, Tan Q, et al. Force measurement between mica surfaces in electrolyte solution [J]. Journal of Southeast University(English Edition), 2013, 29(1): 57-61.