[1] Wu G D, Lo S L. Predicting real-time coagulant dosage in water treatment by artificial neural networks and adaptive network-based fuzzy inference system [J]. Engineering Applications of Artificial Intelligence, 2008, 21(8): 1189-1195.
[2] Maier H R, Morgan N, Chow C W K. Use of artificial neural networks for predicting optimal alum doses and treated water quality parameters [J]. Environmental Modelling & Software, 2004, 19(5): 485-494. DOI:10.1016/s1364-8152(03)00163-4.
[3] Sanchez N P, Skeriotis A T, Miller C M. A PARAFAC-based long-term assessment of DOM in a multi-coagulant drinking water treatment scheme [J]. Environmental Science & Technology, 2014, 48(3): 1582-1591. DOI:10.1021/es4049384.
[4] Li Z F, Zou Z Y, Luo Y H, et al. Intelligent control of turbidity before filtration in waterworks [J]. Water Purification Technology, 2009, 28(4): 64-67.
[5] Akbarizadeh M, Daghbandan A, Yaghoobi M. Modeling and optimization of poly electrolyte dosage in water treatment process by GMDH type-NN and MOGA [J]. International Journal of Chemoinformatics and Chemical Engineering, 2013, 3(2): 94-106.
[6] Griffiths K A, Andrews R C. The application of artificial neural networks for the optimization of coagulant dosage [J]. Water Science and Technology: Water Supply, 2011, 11(5): 605-611.
[7] Lamrini B, Benhammou A, Le Lann M V, et al. A neural software sensor for online prediction of coagulant dosage in a drinking water treatment plant [J]. Transactions of the Institute of Measurement and Control, 2005, 27(3): 195-213. DOI:10.1191/0142331205tm141oa.
[8] Heddam S, Bermad A, Dechemi N. ANFIS-based modelling for coagulant dosage in drinking water treatment plant: A case study [J]. Environmental Monitoring and Assessment, 2012, 184(4): 1953-1971. DOI:10.1007/s10661-011-2091-x.
[9] Apostol G, Kouachi R, Constantinescu I. Optimization of coagulation-flocculation process with aluminum sulfate based on response surface methodology [J]. UPB Buletin Stiintific, Series B: Chemistry and Materials Science, 2011, 73(2): 77-84.
[10] Wei A I, Zhu X F. Research on VRFT-based IMC-PID method and simulation of turbidity control in water supply plant [J]. Control and Instruments in Chemical Industry, 2011, 2: 141-144.(in Chinese)
[11] Heddam S, Bermad A, Dechemi N. ANFIS-based modelling for coagulant dosage in drinking water treatment plant: A case study [J]. Environmental Monitoring and Assessment, 2012, 184(4): 1953-1971. DOI:10.1007/s10661-011-2091-x.
[12] van der Walt J J, Smith J N, Nel M C. Fuzzy logic production control: The vaalkop water treatment plant case study [C]//Biennial Conference of the Water Institute of Southern Africa. Durban, South Africa, 2002: 1-12.
[13] Robenson A, Shukor S R A, Aziz N. Development of process inverse neural network model to determine the required alum dosage at segama water treatment plant Sabah, Malaysia [J]. Computer Aided Chemical Engineering, 2009, 27: 525-530. DOI:10.1016/s1570-7946(09)70308-6.
[14] Griffiths K A, Andrews R C. The application of artificial neural networks for the optimization of coagulant dosage [J]. Water Science and Technology Water Supply, 2011, 11(5): 605-611.
[15] Heddam S, Dechemi N. A new approach based on the dynamic evolving neural-fuzzy inference system(DENFIS)for modelling coagulant dosage(Dos): Case study of water treatment plant of Algeria [J]. Desalination and Water Treatment, 2015, 53(4): 1045-1053. DOI:10.1080/19443994.2013.878669.
[16] Bello O, Hamam Y, Djouani K. Fuzzy dynamic modelling and predictive control of a coagulation chemical dosing unit for water treatment plants [J]. Journal of Electrical Systems and Information Technology, 2014, 1(2): 129-143. DOI:10.1016/j.jesit.2014.08.001.
[17] Pekel L C, Zeybek Z, Hapoglu H, et al. Textile wastewater treatment with coagulation and GPC control [J]. Chemical Engineering, 2010, 21: 817-822.
[18] Maciejowski J M. Predictive control: With constraints [M]. London: Prentice Hall, 2001.
[19] Prakash J, Patwardhan S C, Shah S L. State estimation and nonlinear predictive control of autonomous hybrid system using derivative free state estimators [J]. Journal of Process Control, 2010, 20(7): 787-799. DOI:10.1016/j.jprocont.2010.04.001.
[20] Kobayashi H, Katsura S, Ohnishi K. An analysis of parameter variations of disturbance observer for motion control [J]. IEEE Transactions on Industrial Electronics, 2007, 54(6): 3413-3421.
[21] Li S H, Yang J. Autopilot design for bank-to-turn missiles using robust state feedback control and disturbance observers [J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 558-579. DOI:10.1109/taes.2013.6404120.
[22] Li Shihua, Yang Jun, Chen Wenhua, et al. Disturbance observer-based control: Methods and applications [M]. Boca Raton, FL, USA: CRC Press, 2014.
[23] Mo X M. Dynamic matrix control based on multi-model synthesis and its application [C]//The 26th Chinese Control Conference. Zhangjiajie, China, 2007: 167-170. DOI:10.1109/chicc.2006.4346778.(in Chinese)
[24] Zhu X F, Liu G X, Chen J, et al. Forward and feedback intelligent control of out water coming from water factory [J]. Control Engineering of China, 2010, 17(3): 290-296.(in Chinese)