[1] Venkatesan B M, Bashir R. Nanopore sensors for nucleic acid analysis[J]. Nature Nanotechnology, 2011, 6(10): 615-624. DOI:10.1038/nnano.2011.129.
[2] Branton D, Deamer D W, Marziali A, et al. The potential and challenges of nanopore sequencing[J].Nature biotechnology, 2008, 26(10): 1146-1153. DOI:10.1038/nbt.1495.
[3] Dekker C. Solid-state nanopores[J]. Nature Nanotechnology, 2007, 2(4): 209-215. DOI:10.1038/nnano.2007.27.
[4] van den Hout M, Vilfan I D, Hage S, et al. Direct force measurements on double-stranded RNA in solid-state nanopores[J]. Nano Letters, 2010, 10(2): 701-707. DOI:10.1021/nl903925a.
[5] Nelson E M, Li H, Timp G. Direct, concurrent measurements of the forces and currents affecting DNA in a nanopore with comparable topography[J]. ACS Nano, 2014, 8(6): 5484-5493. DOI:10.1021/nn405331t.
[6] Keyser U F, van der Does J, Dekker C, et al. Optical tweezers for force measurements on DNA in nanopores[J]. Review of Scientific Instruments, 2006, 77(10): 105105. DOI:10.1063/1.2358705.
[7] Smeets R M M, Keyser U F, Dekker N H, et al. Noise in solid-state nanopores[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(2): 417-421.
[8] Ciccarella P, Carminati M, Ferrari G, et al. Integrated low-noise current amplifier for glass-based nanopore sensing[C]//2014 10th Conference on PhD Research in Microelectronics and Electronics.Grenoble, France, 2014: 1-4. DOI:10.1109/prime.2014.6872701.
[9] Tabard-Cossa V, Trivedi D, Wiggin M, et al. Noise analysis and reduction in solid-state nanopores[J].Nanotechnology, 2007, 18(30): 305505. DOI:10.1088/0957-4484/18/30/305505.
[10] Kumar A, Park K B, Kim H M, et al. Noise and its reduction in graphene based nanopore devices[J].Nanotechnology, 2013, 24(49): 495503. DOI:10.1088/0957-4484/24/49/495503.
[11] Wu G, Zhang Y, Si W, et al. Integrated solid-state nanopore devices for third generation DNA sequencing[J]. Science China—Technological Sciences, 2014, 57(10): 1925-1935. DOI:10.1007/s11431-014-5644-8.
[12] Traversi F, Raillon C, Benameur S M, et al. Detecting the translocation of DNA through a nanopore using graphene nanoribbons[J]. Nature Nanotechnology, 2013, 8(12): 939-945. DOI:10.1038/nnano.2013.240.
[13] Xie P, Xiong Q, Fang Y, et al. Local electrical potential detection of DNA by nanowire-nanopore sensors[J]. Nature Nanotechnology, 2011, 7(2): 119-125. DOI:10.1038/nnano.2011.217.
[14] Ivanov A P, Instuli E, McGilvery C M, et al. DNA tunneling detector embedded in a nanopore[J]. Nanoletters, 2010, 11(1): 279-285. DOI:10.1021/nl103873a.
[15] Fanget A, Traversi F, Khlybov S, et al. Nanopore integrated nanogaps for DNA detection[J]. Nano Lett, 2014, 14(1): 244-249. DOI:10.1021/nl403849g.
[16] King G M, Golovchenko J A. Probing nanotube-nanopore interactions[J]. Physical Review Letters, 2005, 95(21): 216103. DOI:10.1103/PhysRevLett.95.216103.
[17] Heng J B, Aksimentiev A, Ho C, et al. Beyond the gene chip[J]. Bell Labs Technical Journal, 2005, 10(3): 5-22. DOI:10.1002/bltj.20102.
[18] Sigalov G, Comer J, Timp G, et al. Detection of DNA sequences using an alternating electric field in a nanopore capacitor[J]. Nano Letters, 2008, 8(1): 56-63. DOI:10.1021/nl071890k.
[19] Gracheva M E, Xiong A, Aksimentiev A, et al. Simulation of the electric response of DNA translocation through a semiconductor nanopore-capacitor[J]. Nanotechnology, 2006, 17(3): 622-633. DOI:10.1088/0957-4484/17/3/002.
[20] Liu K, Feng J, Kis A, et al. Atomically thin molybdenum disulfide nanopores with high sensitivity for DNA translocation[J]. ACS Nano, 2014, 8(3): 2504-2511. DOI:10.1021/nn406102h.
[21] Liu S, Lu B, Zhao Q, et al. Boron nitride nanopores: Highly sensitive DNA single-molecule detectors[J].Advanced Materials, 2013, 25(33): 4549-4554. DOI:10.1002/adma.201301336.
[22] Venkatesan B M, Dorvel B, Yemenicioglu S, et al. Highly sensitive, mechanically stable nanopore sensors for DNA analysis[J]. Advanced Materials, 2009, 21(27): 2771-2776.
[23] Garaj S, Hubbard W, Reina A, et al. Graphene as a subnanometre trans-electrode membrane[J]. Nature, 2010, 467(7312): 190-193. DOI:10.1038/nature09379.
[24] Kowalczyk S W, Grosberg A Y, Rabin Y, et al. Modeling the conductance and DNA blockade of solid-state nanopores[J]. Nanotechnology, 2011, 22(31): 315101. DOI:10.1088/0957-4484/22/31/315101.
[25] Hille B. Ionic channels in nerve membranes[J]. Progress in Biophysics and Molecular Biology, 1970, 21: 1-32. DOI:10.1016/0079-6107(70)90022-2.
[26] Wanunu M, Morrison W, Rabin Y, et al. Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient[J]. Nature Nanotechnology, 2010, 5(2): 160-165. DOI:10.1038/nnano.2009.379.
[27] Merchant C A, Healy K, Wanunu M, et al. DNA translocation through graphene nanopores[J]. Nano Letters, 2010, 10(8): 2915-2921. DOI: 10.1021/nl101046t.
[28] Schneider G F, Kowalczyk S W, Calado V E, et al. DNA translocation through graphene nanopores[J]. Nano Letters, 2010, 10(8): 3163-3167. DOI:10.1021/nl102069z.
[29] Hall J E. Access resistance of a small circular pore[J]. The Journal of General Physiology, 1975, 66(4): 531-532. DOI:10.1085/jgp.66.4.531.
[30] Hyun C, Rollings R, Li J. Probing access resistance of solid-state nanopores with a scanning-probe microscope tip[J]. Small, 2012, 8(3): 385-392. DOI:10.1002/smll.201290017.
[31] Goepfrich K, Kulkarni C V, Pambos O J, et al. Lipid nanobilayers to host biological nanopores for DNA translocations[J]. Langmuir, 2013, 29(1): 355-364. DOI:10.1021/la3041506.
[32] Kasianowicz J J, Brandin E, Branton D, et al. Characterization of individual polynucleotide molecules using a membrane channel[J]. Proceedings of the National Academy of Sciences, 1996, 93(24): 13770-13773. DOI:10.1073/pnas.93.24.13770.
[33] Clarke J, Wu H C, Jayasinghe L, et al. Continuous base identification for single-molecule nanopore DNA sequencing[J]. Nature Nanotechnology, 2009, 4(4): 265-270. DOI:10.1038/nnano.2009.12.