|Table of Contents|

[1] Yu Jingwen, Si Wei, Sha Jingjie, Chen Yunfei, et al. Effect of salt gradients on DNA translocationthrough solid-state nanopores [J]. Journal of Southeast University (English Edition), 2016, 32 (3): 307-311. [doi:10.3969/j.issn.1003-7985.2016.03.008]
Copy

Effect of salt gradients on DNA translocationthrough solid-state nanopores()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
32
Issue:
2016 3
Page:
307-311
Research Field:
Mechanical Engineering
Publishing date:
2016-09-20

Info

Title:
Effect of salt gradients on DNA translocationthrough solid-state nanopores
Author(s):
Yu Jingwen Si Wei Sha Jingjie Chen Yunfei
School of Mechanical Engineering, Southeast University, Nanjing 211189, China
Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
Keywords:
solid-state nanopore salt gradients λ-DNA signal-to-noise ratio current blockade dwell time
PACS:
TH789;Q786
DOI:
10.3969/j.issn.1003-7985.2016.03.008
Abstract:
Aiming at the issues of controlling the translocation speed of DNA through a solid-state nanopore and enlarging the signal-to-noise ratio of ionic current modulation, which are challenges for the application of nanopore technology in DNA detection, salt concentration gradients are applied across the nanopore to investigate their influence on the DNA translocation time and signal-to-noise ratio. Experimental data demonstrates that, in symmetric concentration conditions, both the current blockade and dwell time for λ-DNA translocation through a solid-state nanopore increase along with potassium chloride concentration. When the concentration in the trans chamber is decreased from 1 to 0.1 mol/L, keeping the concentration of the cis chamber at 1 mol/L, the normalized current blockade is found to be increased by one order. The increased dwell time and enhanced signal-to-noise ratio are achieved with salt gradients across the nanopore, which can improve the sensitivity when detecting DNA samples.

References:

[1] Kasianowicz J J, Brandin E, Branton D, et al. Characterization of individual polynucleotide molecules using a membrane channel[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(24): 13770-13773. DOI:10.1073/pnas.93.24.13770.
[2] Bezrukov S M, Vodyanoy I, Parsegian V A. Counting polymers moving through a single ion channel[J]. Nature, 1994, 370(6487): 279-281. DOI:10.1038/370279a0.
[3] Reiner J E, Balijepalli A, Robertson J W F, et al. Disease detection and management via single nanopore-based sensors[J]. Chemical Reviews, 2012, 112(12): 6431-6451. DOI:10.1021/cr300381m.
[4] Miles B N, Ivanov A P, Wilson K A, et al. Single molecule sensing with solid-state nanopores: Novel materials, methods, and applications[J]. Chemical Society Reviews, 2013, 42(1): 15-28. DOI:10.1039/c2cs35286a.
[5] Fologea D, Uplinger J, Thomas B, et al. Slowing DNA translocation in a solid-state nanopore[J]. Nano Letters, 2005, 5(9): 1734-1737. DOI:10.1021/nl051063o.
[6] Haque F, Li J, Wu H C, et al. Solid-state and biological nanopore for real-time sensing of single chemical and sequencing of DNA[J]. Nano Today, 2013, 8(1): 56-74. DOI:10.1016/j.nantod.2012.12.008.
[7] Schneider G F, Dekker C. DNA sequencing with nanopores[J]. Nature Biotechnology, 2012, 30(4): 326-328. DOI:10.1038/nbt.2181.
[8] Dekker C. Solid-state nanopores[J]. Nature Nanotechnology, 2007, 2(4): 209-215. DOI:10.1038/nnano.2007.27.
[9] Verschueren D V, Jonsson M P, Dekker C. Temperature dependence of DNA translocations through solid-state nanopores[J]. Nanotechnology, 2015, 26(23): 234004. DOI:10.1088/0957-4484/26/23/234004.
[10] Nicoli F, Verschueren D, Klein M, et al. DNA translocations through solid-state plasmonic nanopores[J]. Nano Letters, 2014, 14(12): 6917-6925. DOI:10.1021/nl503034j.
[11] Uplinger J, Thomas B, Rollings R, et al. K+, Na+, and Mg2+ on DNA translocation in silicon nitride nanopores[J]. Electrophoresis, 2012, 33(23): 3448-3457. DOI:10.1002/elps.201200165.
[12] Beamish E, Kwok H, Tabard-Cossa V, et al. Precise control of the size and noise of solid-state nanopores using high electric fields[J]. Nanotechnology, 2012, 23(40): 405301. DOI:10.1088/0957-4484/23/40/405301.
[13] Garaj S, Hubbard W, Reina A, et al. Graphene as a subnanometre trans-electrode membrane[J]. Nature, 2010, 467(7312): 190-193. DOI:10.1038/nature09379.
[14] Stein D, Kruithof M, Dekker C. Surface-charge-governed ion transport in nanofluidic channels[J]. Physical Review Letters, 2004, 93(3): 035901. DOI:10.1103/PhysRevLett.93.035901.
[15] Levine S, Marriott J R, Neale G, et al. Theory of electrokinetic flow in fine cylindrical capillaries at high zeta-potentials[J]. Journal of Colloid and Interface Science, 1975, 52(1): 136-149. DOI:10.1016/0021-9797(75)90310-0.
[16] Kowalczyk S W, Grosberg A Y, Rabin Y, et al. Modeling the conductance and DNA blockade of solid-state nanopores[J]. Nanotechnology, 2011, 22(31): 315101. DOI:10.1088/0957-4484/22/31/315101.
[17] Smeets R M M, Keyser U F, Krapf D, et al. Salt dependence of ion transport and DNA translocation through solid-state nanopores[J]. Nano Letters, 2006, 6(1): 89-95. DOI:10.1021/nl052107w.
[18] Wanunu M, Morrison W, Rabin Y, et al. Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient[J]. Nature Nanotechnology, 2010, 5(2): 160-165. DOI:10.1038/nnano.2009.379.
[19] van Dorp S, Keyser U F, Dekker N H, et al. Origin of the electrophoretic force on DNA in solid-state nanopores[J]. Nature Physics, 2009, 5(5): 347-351. DOI:10.1038/nphys1230.
[20] Luan B, Aksimentiev A. Electro-osmotic screening of the DNA charge in a nanopore[J]. Physical Review E, 2008, 78(2): 021912. DOI:10.1103/PhysRevE.78.021912.

Memo

Memo:
Biographies: Yu Jingwen(1992—), female, graduate; Chen Yunfei(corresponding author), male, doctor, professor, yunfeichen@seu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No. 51435003, 51375092), Fundamental Research Funds for the Central Universities, the Innovative Project for Graduate Students of Jiangsu Province(No.KYLX_0100), the Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ1540).
Citation: Yu Jingwen, Si Wei, Sha Jingjie, et al. Effect of salt gradients on DNA translocation through solid-state nanopores[J].Journal of Southeast University(English Edition), 2016, 32(3):307-311.DOI:10.3969/j.issn.1003-7985.2016.03.008.
Last Update: 2016-09-20