|Table of Contents|

[1] Yu Jingwen, Si Wei, Sha Jingjie, Chen Yunfei, et al. Effect of salt gradients on DNA translocationthrough solid-state nanopores [J]. Journal of Southeast University (English Edition), 2016, 32 (3): 307-311. [doi:10.3969/j.issn.1003-7985.2016.03.008]
Copy

Effect of salt gradients on DNA translocationthrough solid-state nanopores()
盐浓度梯度对DNA通过固态纳米孔的影响
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
32
Issue:
2016 3
Page:
307-311
Research Field:
Mechanical Engineering
Publishing date:
2016-09-20

Info

Title:
Effect of salt gradients on DNA translocationthrough solid-state nanopores
盐浓度梯度对DNA通过固态纳米孔的影响
Author(s):
Yu Jingwen, Si Wei, Sha Jingjie, Chen Yunfei
School of Mechanical Engineering, Southeast University, Nanjing 211189, China
Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
余静文, 司伟, 沙菁, 陈云飞
东南大学机械工程学院, 南京 211189; 江苏省微纳生物医疗器械设计与制造重点实验室, 南京 211189
Keywords:
solid-state nanopore salt gradients λ-DNA signal-to-noise ratio current blockade dwell time
固态纳米孔 盐浓度梯度 λ-DNA 信噪比 堵塞电流 过孔时间
PACS:
TH789;Q786
DOI:
10.3969/j.issn.1003-7985.2016.03.008
Abstract:
Aiming at the issues of controlling the translocation speed of DNA through a solid-state nanopore and enlarging the signal-to-noise ratio of ionic current modulation, which are challenges for the application of nanopore technology in DNA detection, salt concentration gradients are applied across the nanopore to investigate their influence on the DNA translocation time and signal-to-noise ratio. Experimental data demonstrates that, in symmetric concentration conditions, both the current blockade and dwell time for λ-DNA translocation through a solid-state nanopore increase along with potassium chloride concentration. When the concentration in the trans chamber is decreased from 1 to 0.1 mol/L, keeping the concentration of the cis chamber at 1 mol/L, the normalized current blockade is found to be increased by one order. The increased dwell time and enhanced signal-to-noise ratio are achieved with salt gradients across the nanopore, which can improve the sensitivity when detecting DNA samples.
针对DNA过孔速度过快以及信噪比低等制约固态纳米孔应用于DNA分子检测的问题, 通过改变纳米孔两侧盐溶液的浓度, 研究了其对DNA的过孔时间以及信噪比的影响.实验结果表明, 当纳米孔两侧氯化钾溶液浓度相同时, λ-DNA的过孔时间以及电流堵塞信号都随着氯化钾浓度的提高而增加.但当纳米孔cis端的KCL浓度保持在1 mol/L, trans端的氯化钾浓度由1 mol/L变为0.1 mol/L时, 归一化后的电流信号幅值增加了1个数量级.因此, 调整纳米孔两端盐溶液的浓度梯度可以有效降低DNA的过孔速度和提高信噪比, 从而大大提高了纳米孔在DNA分子检测方面的灵敏度.

References:

[1] Kasianowicz J J, Brandin E, Branton D, et al. Characterization of individual polynucleotide molecules using a membrane channel[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(24): 13770-13773. DOI:10.1073/pnas.93.24.13770.
[2] Bezrukov S M, Vodyanoy I, Parsegian V A. Counting polymers moving through a single ion channel[J]. Nature, 1994, 370(6487): 279-281. DOI:10.1038/370279a0.
[3] Reiner J E, Balijepalli A, Robertson J W F, et al. Disease detection and management via single nanopore-based sensors[J]. Chemical Reviews, 2012, 112(12): 6431-6451. DOI:10.1021/cr300381m.
[4] Miles B N, Ivanov A P, Wilson K A, et al. Single molecule sensing with solid-state nanopores: Novel materials, methods, and applications[J]. Chemical Society Reviews, 2013, 42(1): 15-28. DOI:10.1039/c2cs35286a.
[5] Fologea D, Uplinger J, Thomas B, et al. Slowing DNA translocation in a solid-state nanopore[J]. Nano Letters, 2005, 5(9): 1734-1737. DOI:10.1021/nl051063o.
[6] Haque F, Li J, Wu H C, et al. Solid-state and biological nanopore for real-time sensing of single chemical and sequencing of DNA[J]. Nano Today, 2013, 8(1): 56-74. DOI:10.1016/j.nantod.2012.12.008.
[7] Schneider G F, Dekker C. DNA sequencing with nanopores[J]. Nature Biotechnology, 2012, 30(4): 326-328. DOI:10.1038/nbt.2181.
[8] Dekker C. Solid-state nanopores[J]. Nature Nanotechnology, 2007, 2(4): 209-215. DOI:10.1038/nnano.2007.27.
[9] Verschueren D V, Jonsson M P, Dekker C. Temperature dependence of DNA translocations through solid-state nanopores[J]. Nanotechnology, 2015, 26(23): 234004. DOI:10.1088/0957-4484/26/23/234004.
[10] Nicoli F, Verschueren D, Klein M, et al. DNA translocations through solid-state plasmonic nanopores[J]. Nano Letters, 2014, 14(12): 6917-6925. DOI:10.1021/nl503034j.
[11] Uplinger J, Thomas B, Rollings R, et al. K+, Na+, and Mg2+ on DNA translocation in silicon nitride nanopores[J]. Electrophoresis, 2012, 33(23): 3448-3457. DOI:10.1002/elps.201200165.
[12] Beamish E, Kwok H, Tabard-Cossa V, et al. Precise control of the size and noise of solid-state nanopores using high electric fields[J]. Nanotechnology, 2012, 23(40): 405301. DOI:10.1088/0957-4484/23/40/405301.
[13] Garaj S, Hubbard W, Reina A, et al. Graphene as a subnanometre trans-electrode membrane[J]. Nature, 2010, 467(7312): 190-193. DOI:10.1038/nature09379.
[14] Stein D, Kruithof M, Dekker C. Surface-charge-governed ion transport in nanofluidic channels[J]. Physical Review Letters, 2004, 93(3): 035901. DOI:10.1103/PhysRevLett.93.035901.
[15] Levine S, Marriott J R, Neale G, et al. Theory of electrokinetic flow in fine cylindrical capillaries at high zeta-potentials[J]. Journal of Colloid and Interface Science, 1975, 52(1): 136-149. DOI:10.1016/0021-9797(75)90310-0.
[16] Kowalczyk S W, Grosberg A Y, Rabin Y, et al. Modeling the conductance and DNA blockade of solid-state nanopores[J]. Nanotechnology, 2011, 22(31): 315101. DOI:10.1088/0957-4484/22/31/315101.
[17] Smeets R M M, Keyser U F, Krapf D, et al. Salt dependence of ion transport and DNA translocation through solid-state nanopores[J]. Nano Letters, 2006, 6(1): 89-95. DOI:10.1021/nl052107w.
[18] Wanunu M, Morrison W, Rabin Y, et al. Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient[J]. Nature Nanotechnology, 2010, 5(2): 160-165. DOI:10.1038/nnano.2009.379.
[19] van Dorp S, Keyser U F, Dekker N H, et al. Origin of the electrophoretic force on DNA in solid-state nanopores[J]. Nature Physics, 2009, 5(5): 347-351. DOI:10.1038/nphys1230.
[20] Luan B, Aksimentiev A. Electro-osmotic screening of the DNA charge in a nanopore[J]. Physical Review E, 2008, 78(2): 021912. DOI:10.1103/PhysRevE.78.021912.

Memo

Memo:
Biographies: Yu Jingwen(1992—), female, graduate; Chen Yunfei(corresponding author), male, doctor, professor, yunfeichen@seu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No. 51435003, 51375092), Fundamental Research Funds for the Central Universities, the Innovative Project for Graduate Students of Jiangsu Province(No.KYLX_0100), the Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ1540).
Citation: Yu Jingwen, Si Wei, Sha Jingjie, et al. Effect of salt gradients on DNA translocation through solid-state nanopores[J].Journal of Southeast University(English Edition), 2016, 32(3):307-311.DOI:10.3969/j.issn.1003-7985.2016.03.008.
Last Update: 2016-09-20