[1] Kasianowicz J J, Brandin E, Branton D, et al. Characterization of individual polynucleotide molecules using a membrane channel[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(24): 13770-13773. DOI:10.1073/pnas.93.24.13770.
[2] Bezrukov S M, Vodyanoy I, Parsegian V A. Counting polymers moving through a single ion channel[J]. Nature, 1994, 370(6487): 279-281. DOI:10.1038/370279a0.
[3] Reiner J E, Balijepalli A, Robertson J W F, et al. Disease detection and management via single nanopore-based sensors[J]. Chemical Reviews, 2012, 112(12): 6431-6451. DOI:10.1021/cr300381m.
[4] Miles B N, Ivanov A P, Wilson K A, et al. Single molecule sensing with solid-state nanopores: Novel materials, methods, and applications[J]. Chemical Society Reviews, 2013, 42(1): 15-28. DOI:10.1039/c2cs35286a.
[5] Fologea D, Uplinger J, Thomas B, et al. Slowing DNA translocation in a solid-state nanopore[J]. Nano Letters, 2005, 5(9): 1734-1737. DOI:10.1021/nl051063o.
[6] Haque F, Li J, Wu H C, et al. Solid-state and biological nanopore for real-time sensing of single chemical and sequencing of DNA[J]. Nano Today, 2013, 8(1): 56-74. DOI:10.1016/j.nantod.2012.12.008.
[7] Schneider G F, Dekker C. DNA sequencing with nanopores[J]. Nature Biotechnology, 2012, 30(4): 326-328. DOI:10.1038/nbt.2181.
[8] Dekker C. Solid-state nanopores[J]. Nature Nanotechnology, 2007, 2(4): 209-215. DOI:10.1038/nnano.2007.27.
[9] Verschueren D V, Jonsson M P, Dekker C. Temperature dependence of DNA translocations through solid-state nanopores[J]. Nanotechnology, 2015, 26(23): 234004. DOI:10.1088/0957-4484/26/23/234004.
[10] Nicoli F, Verschueren D, Klein M, et al. DNA translocations through solid-state plasmonic nanopores[J]. Nano Letters, 2014, 14(12): 6917-6925. DOI:10.1021/nl503034j.
[11] Uplinger J, Thomas B, Rollings R, et al. K+, Na+, and Mg2+ on DNA translocation in silicon nitride nanopores[J]. Electrophoresis, 2012, 33(23): 3448-3457. DOI:10.1002/elps.201200165.
[12] Beamish E, Kwok H, Tabard-Cossa V, et al. Precise control of the size and noise of solid-state nanopores using high electric fields[J]. Nanotechnology, 2012, 23(40): 405301. DOI:10.1088/0957-4484/23/40/405301.
[13] Garaj S, Hubbard W, Reina A, et al. Graphene as a subnanometre trans-electrode membrane[J]. Nature, 2010, 467(7312): 190-193. DOI:10.1038/nature09379.
[14] Stein D, Kruithof M, Dekker C. Surface-charge-governed ion transport in nanofluidic channels[J]. Physical Review Letters, 2004, 93(3): 035901. DOI:10.1103/PhysRevLett.93.035901.
[15] Levine S, Marriott J R, Neale G, et al. Theory of electrokinetic flow in fine cylindrical capillaries at high zeta-potentials[J]. Journal of Colloid and Interface Science, 1975, 52(1): 136-149. DOI:10.1016/0021-9797(75)90310-0.
[16] Kowalczyk S W, Grosberg A Y, Rabin Y, et al. Modeling the conductance and DNA blockade of solid-state nanopores[J]. Nanotechnology, 2011, 22(31): 315101. DOI:10.1088/0957-4484/22/31/315101.
[17] Smeets R M M, Keyser U F, Krapf D, et al. Salt dependence of ion transport and DNA translocation through solid-state nanopores[J]. Nano Letters, 2006, 6(1): 89-95. DOI:10.1021/nl052107w.
[18] Wanunu M, Morrison W, Rabin Y, et al. Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient[J]. Nature Nanotechnology, 2010, 5(2): 160-165. DOI:10.1038/nnano.2009.379.
[19] van Dorp S, Keyser U F, Dekker N H, et al. Origin of the electrophoretic force on DNA in solid-state nanopores[J]. Nature Physics, 2009, 5(5): 347-351. DOI:10.1038/nphys1230.
[20] Luan B, Aksimentiev A. Electro-osmotic screening of the DNA charge in a nanopore[J]. Physical Review E, 2008, 78(2): 021912. DOI:10.1103/PhysRevE.78.021912.