|Table of Contents|

[1] Yue ZhongwenSong YaoHan RuijieZhang Wang, Guo Chao,. Experimental study on dynamic fracture behaviorof three-point bending beam with double deformity inclusions [J]. Journal of Southeast University (English Edition), 2016, 32 (3): 333-338. [doi:10.3969/j.issn.1003-7985.2016.03.013]
Copy

Experimental study on dynamic fracture behaviorof three-point bending beam with double deformity inclusions()
含异型双夹杂三点弯曲梁动态断裂行为的实验研究
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
32
Issue:
2016 3
Page:
333-338
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2016-09-20

Info

Title:
Experimental study on dynamic fracture behaviorof three-point bending beam with double deformity inclusions
含异型双夹杂三点弯曲梁动态断裂行为的实验研究
Author(s):
Yue ZhongwenSong YaoHan RuijieZhang Wang Guo Chao
School of Mechanics and Civil Engineering, China University of Mining and Technology, Beijing 100083, China
岳中文 宋耀 韩瑞杰 张旺 郭超
中国矿业大学(北京)力学与建筑工程学院, 北京 100083
Keywords:
dynamic caustics deformity inclusion dynamic stress intensity factor crack propagation velocity
动态焦散线 异型双夹杂 动态应力强度因子 裂纹扩展速度
PACS:
O346.1
DOI:
10.3969/j.issn.1003-7985.2016.03.013
Abstract:
The dynamic fracture behavior of the three-point bending beam with double deformity inclusions under impact loading is studied by using digital high-speed photography in combination with the transmission-type dynamic caustic method. The experimental results indicate that the fluctuation of crack propagation velocity v first increases and then decreases in the crack propagation process. During the process of crack propagating into the inclusion area, the fracture resistance effect of the circular inclusion is the most significant and the effects of triangular and square inclusions are less obvious. The stress intensity factor near the crack tip increases during the propagation process and reaches its maximum value when the crack tip is close to the inclusions. The crack tip’s dynamic stress intensity factor(DSIF)decreases when the crack exceeds the middle area of the double inclusions. These results provide an experimental basis and scientific foundation to strengthen the evaluation and fracture analysis of the structure containing deformity inclusions.
利用数字式高速摄影与透射式动态焦散线光学技术相结合的方法, 对含异型双夹杂三点弯曲梁在冲击载荷作用下的动态断裂力学行为进行了研究.实验研究结果表明:裂纹扩展过程中, 裂纹扩展速度v经历了波动性增大再减小的过程;在裂纹扩展至夹杂中间区域过程中, 圆形双夹杂对裂纹的阻裂作用最强, 三角形双夹杂和正方形双夹杂的阻裂作用较弱;裂纹在距离夹杂较远处向夹杂扩展过程中, 裂尖应力强度因子波动性增加;当裂尖靠近夹杂时, 其裂尖应力强度因子达到最大值.当裂纹扩展超出夹杂所对应中间区域, 裂尖应力强度因子出现波动性降低趋势.研究成果为含异型夹杂结构的强度评估及断裂分析提供实验依据及科学基础.

References:

[1] Atkinson C. The interaction between a crack and an inclusion[J]. International Journal of Engineering Science, 1972, 10(2): 127-136. DOI:10.1016/0020-7225(72)90011-0.
[2] Erdogan F, Gupta G D, Ratwani M. Interaction between a circular inclusion and an arbitrarily oriented crack[J]. Journal of Applied Mechanics, 1974, 41(4): 1007-1013. DOI:10.1115/1.3423424.
[3] Hu K X, Chandra A. Interactions among cracks and rigid lines near a free surface[J]. International Journal of Solids and Structures, 1993, 30(14): 1919-1937. DOI:10.1016/0020-7683(93)90225-v.
[4] Cheeseman B A, Santare M H. The interaction of a curved crack with a circular elastic inclusion[J]. International Journal of Fracture, 2000, 103(3): 259-277.
[5] Hwu C, Liang Y K, Yen W J. Interactions between inclusions and various types of cracks[J]. International Journal of Fracture, 1995, 73(4): 301-323. DOI:10.1007/bf00027272.
[6] Zhang M H, Tang R J. Interaction between crack and elastic inclusion[J]. Applied Mathematics and Mechanics, 1995, 16(4):307-318. DOI:10.1007/bf02456943.
[7] Yao X F, Xu W. Recent application of caustics on experimental dynamic fracture studies[J]. Fatigue & Fracture of Engineering Materials & Structures, 2011, 34(6): 448-459. DOI:10.1111/j.1460-2695.2010.01539.x.
[8] Manogg P. Schattenoptische messung der spezifischen bruchenergie wahrend des bruchvorgangs bei plexiglas[J]. Proc Int Con Physics Non-Cristalline Solids. Delft, The Netherlands, 1964: 481-490.
[9] Rosakis A J. On the uniqueness of representation of the stress field of plane polygonal dislocation loops[J]. Scripta Metallurgica, 1980, 14(11): 1261-1265. DOI:10.1016/0036-9748(80)90268-9.
[10] Jajam K C, Tippur H V. Role of inclusion stiffness and interfacial strength on dynamic matrix crack growth: An experimental study[J]. International Journal of Solids and Structures, 2012, 49(9): 1127-1146. DOI:10.1016/j.ijsolstr.2012.01.009.
[11] Papadopoulos G A, Papanicolaou G C. Dynamic crack propagation in rubber-modified composite models[J]. Journal of Materials Science, 1988, 23(10): 3421-3434. DOI:10.1007/bf00540474.
[12] Yao X F, Jin G C, Arakawa K, et al. Experimental studies on dynamic fracture behavior of thin plates with parallel single edge cracks[J]. Polymer Testing, 2002, 21(8): 933-940. DOI:10.1016/s0142-9418(02)00037-5.
[13] Yao X F, Xu W, Xu M Q, et al. Experimental study of dynamic fracture behavior of PMMA with overlapping offset-parallel cracks[J]. Polymer Testing, 2003, 22(6): 663-670. DOI:10.1016/s0142-9418(02)00173-3.
[14] Yao X F, Xu W, Bai S L, et al. Caustics analysis of the crack initiation and propagation of graded materials[J]. Composites Science and Technology, 2008, 68(3/4):953-962. DOI:10.1016/j.compscitech.2007.08.007.
[15] Yao X F, Xu W, Arakawa K, et al. Dynamic optical visualization on the interaction between propagating crack and stationary crack[J]. Optics and Lasers in Engineering, 2005, 43(2):195-207. DOI:10.1016/j.optlaseng.2004.06.003.
[16] Gong K, Li Z. Caustics method in dynamic fracture problem of orthotropic materials[J]. Optics and Lasers in Engineering, 2008, 46(8): 614-619. DOI:10.1016/j.optlaseng.2008.03.019.
[17] Yue Z W, Guo Y, Wang X, et al. Influence of empty hole shape on directional fracture controlled blasting of rock [J]. Rock and Soil Mechanics, 2016, 37(2): 376-382.
[18] Takahashi K, Arakawa K. Dependence of crack acceleration on the dynamic stress-intensity factor in polymers[J]. Experimental Mechanics, 1987, 27(2):195-199. DOI:10.1007/bf02319474.
[19] Ma Y J, Yao X F, Wang D. Experimental investigation on mechanical properties of CNT film using digital speckle correlation method [J]. Optics and Lasers in Engineering, 2012, 50(11):1575-1581. DOI:10.1016/j.optlaseng.2012.05.023.

Memo

Memo:
Biography: Yue Zhongwen(1975—), male, doctor, associate professor, zwyue75@163.com.
Foundation items: The National Basic Research Program of China(973 Program)(No.2011CB606105), the National Natural Science Foundation of China(No.51374210, 51134025).
Citation: Yue Zhongwen, Song Yao, Han Ruijie, et al. Experimental study on dynamic fracture behavior of three-point bending beam with double deformity inclusions[J].Journal of Southeast University(English Edition), 2016, 32(3):333-338.DOI:10.3969/j.issn.1003-7985.2016.03.013.
Last Update: 2016-09-20