[1] Ge H B, Usami T. Cyclic tests of concrete-filled steel box columns[J]. Journal of Structural Engineering, 1996, 122(10): 1169-1177.
[2] Marson J, Bruneau M. Cyclic testing of concrete-filled circular steel bridge piers having encased fixed-based detail[J]. Journal of Bridge Engineering, 2004, 9(1): 14-23.
[3] Han L H, Huang H, Tao Z, et al. Concrete-filled double skin steel tubular(CFDST)beam-columns subjected to cyclic bending[J]. Engineering Structures, 2006, 28(12): 1698-1714. DOI:10.1016/j.engstruct.2006.03.004.
[4] Goto Y, Jiang K S, Obata M. Stability and ductility of thin-walled circular steel columns under cyclic bidirectional loading[J]. Journal of Structural Engineering, 2006, 132(10): 1621-1631.
[5] Hajjar J F, Molodan A, Schiller P H. A distributed plasticity model for cyclic analysis of concrete-filled steel tube beam-columns and composite frames[J]. Engineering Structures, 1998, 20(4/5/6): 398-412.
[6] Susantha K A S, Ge H B, Usami T. Cyclic analysis and capacity prediction of concrete-filled steel box columns[J]. Earthquake Engineering & Structural Dynamics, 2002, 31(2): 195-216.
[7] Tort C, Hajjar J F. Mixed finite-element modeling of rectangular concrete-filled steel tube members and frames under static and dynamic loads[J]. Journal of Structural Engineering, 2010, 136(6): 654-664.
[8] Schneider S P. Axially loaded concrete-filled steel tubes[J]. Journal of Structural Engineering, 1998, 124(10): 1125-1138.
[9] Goto Y, Kumar G P, Kawanishi N. Nonlinear finite-element analysis for hysteretic behavior of thin-walled circular steel columns with in-filled concrete[J]. Journal of Structural Engineering, 2010, 136(11): 1413-1422.
[10] Goto Y, Kumar G P, Seki K. Finite element analysis for hysteretic behavior of thin-walled CFT columns with large cross sections[J]. Procedia Engineering, 2011, 14: 2021-2030. DOI:10.1016/j.proeng.2011.07.254.
[11] Goto Y, Mizuno K, Kumar G P. Nonlinear finite element analysis for cyclic behavior of thin-walled stiffened rectangular steel columns with in-filled concrete[J]. Journal of Structural Engineering, 2012, 138(5): 571-584.
[12] Deng Y, Tuan C Y, Xiao Y. Flexural behavior of concrete-filled circular steel tubes under high-strain rate impact loading[J]. Journal of Structural Engineering, 2012, 138(3): 449-456.
[13] Yousuf M, Uy B, Tao Z, et al. Behaviour and resistance of hollow and concrete-filled mild steel columns due to transverse impact loading[J]. Australian Journal of Structural Engineering, 2012, 13(1): 65-80.
[14] Yousuf M, Uy B, Tao Z, et al. Transverse impact resistance of hollow and concrete filled stainless steel columns[J]. Journal of Constructional Steel Research, 2013, 82: 177-189. DOI:10.1016/j.jcsr.2013.01.005.
[15] Yousuf M, Uy B, Tao Z, et al. Impact behaviour of pre-compressed hollow and concrete filled mild and stainless steel columns[J]. Journal of Constructional Steel Research, 2014, 96: 54-68. DOI:10.1016/j.jcsr.2013.12.009.
[16] Shakir A S, Guan Z W, Jones S W. Nonlinear finite element analysis of concrete filled steel tube(CFST)columns under projectile impact loading[C/OL]//The 5th International Conference on Computational Methods. Cambridge, UK, 2014. http://www.sci-en-tech.com/ICCM2014/PDFs/312-921-1-PB.pdf.
[17] Xia J, Zong Z H, Xu C R, et al. Study on seismic performance of double-skin steel-concrete composite box piers: Part Ⅰ—Bidirectional quasi-static test [J]. Journal of Southeast University (English Edition), 2016, 32(1): 58-66.
[18] Hibbitt D, Karlsson B, Sorenson P. ABAQUS version 6.4: Theory manual, users’ manual, verification manual and example problems manual [M]. Pawtucket, RI, USA: Hibbitt, Karlson & Sorenson Inc., 2003.
[19] Baltay P, Gjelsvik A. Coefficient of friction for steel on concrete at high normal stress[J]. Journal of Materials in Civil Engineering, 1990, 2(1): 46-49.
[20] Huang H. Behavior of concrete filled double-skin steel tubular beam-columns[D]. Fuzhou: School of Civil Engineering, Fuzhou University, 2006.(in Chinese)