|Table of Contents|

[1] Yang Yu, Tang Wencheng,. Elastic modulus determination at different levelsof periodontal ligament in nanoindentation [J]. Journal of Southeast University (English Edition), 2017, 33 (1): 33-38. [doi:10.3969/j.issn.1003-7985.2017.01.006]
Copy

Elastic modulus determination at different levelsof periodontal ligament in nanoindentation()
纳米压痕法测量牙周膜不同层面弹性模量
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
33
Issue:
2017 1
Page:
33-38
Research Field:
Biological Science and Medical Engineering
Publishing date:
2017-03-30

Info

Title:
Elastic modulus determination at different levelsof periodontal ligament in nanoindentation
纳米压痕法测量牙周膜不同层面弹性模量
Author(s):
Yang Yu, Tang Wencheng
School of Mechanical Engineering, Southeast University, Nanjing 211189, China
杨宇, 汤文成
东南大学机械工程学院, 南京211189
Keywords:
periodontal ligament(PDL) elastic modulus nanoindentation material properties canine
牙周膜 弹性模量 纳米压痕 材料特性 尖牙
PACS:
R783.1
DOI:
10.3969/j.issn.1003-7985.2017.01.006
Abstract:
In order to investigate the material properties of periodontal ligament(PDL)in different locations, the nanoindentation method is used to survey the elastic modulus of the PDL at different levels. Cadaveric specimens of human mandibular canine were obtained from 4 adult donors, 16 transverse specimens were made from the sections of cervical margin, midroot and apex using the slow cutting machine. The prepared specimens were tested in different sections(along the longitudinal direction)and different areas(in the circumferential direction). According to the Oliver-Pharr theory, the mean values of elastic modulus were calculated for each area and the differences among them were compared. In the midroot section, the average elastic modulus is ranging from 0.11 to 0.23 MPa, the changing range of the cervical margin and apex are from 0.21 to 0.53 MPa and 0.44 to 0.62 MPa, respectively. Experimental results indicate that the average elastic modulus in the midroot is lower than that in the cervical margin and apex, and relatively small changes occur among them. However, there is a large change to the elastic modulus value in the circumferential direction for the PDL.
为了研究牙周膜(PDL)不同部位的材料特性, 采用纳米压痕方法测量牙周膜不同层面的弹性模量.实验样本取自4个成年捐献者的上颚尖牙, 使用慢速切割机分别在颈缘、根中、根尖3个层面共制作16个切片样本.分别测试每个尖牙样本的不同区域(沿圆周方向)和不同层面(沿长轴方向), 基于Oliver-Pharr理论计算这些位置的弹性模量并比较它们之间的差异.根中区域平均弹性模量为0.11~0.23 MPa, 颈缘与根尖分别为0.21~0.53 MPa, 0.44~0.62 MPa.实验结果表明, 根中区域的弹性模量平均值小于颈缘与根尖区域, 且变化较小, 而沿圆周方向的弹性模量有较大的变化.

References:

[1] Storey E. The nature of tooth movement [J]. American Journal of Orthodontics, 1973, 63(3): 292-314. DOI:10.1016/0002-9416(73)90353-9.
[2] Melsen B. Tissue reaction to orthodontic tooth movement—a new paradigm [J]. European Journal of Orthodontics, 2001, 23(6): 671-681. DOI:10.1093/ejo/23.6.671.
[3] Marangalou J H, Ghalichi F, Mirzakouchaki B. Numerical simulation of orthodontic bone remodeling [J]. Orthodontic Waves, 2009, 68(2): 64-71. DOI:10.1016/j.odw.2008.12.002.
[4] Badawi H M, Toogood R W, Carey J P, et al. Three-dimensional orthodontic force measurements[J]. American Journal of Orthodontics and Dentofacial Orthopedics, 2010, 136(4): 518-528. DOI:10.1016/j.ajodo.2009.02.025.
[5] Dorow C, Krstin N, Sander F G. Determination of the mechanical properties of the periodontal ligament in a uniaxial tensional experiment[J]. Journal of Orofacial Orthopedics, 2003, 64(2): 100-107. DOI:10.1007/s00056-003-0225-7.
[6] Dorow C, Krstin N, Sander F G. Experiments to determine the material properties of the periodontal ligament[J].Journal of Orofacial Orthopedics, 2002, 63(2): 94-104. DOI:10.1007/s00056-002-0107-4.
[7] Toms S R, Lemons J E, Bartolucci A A, et al. Nonlinear stress-strain behavior of periodontal ligament under orthodontic loading[J]. American Journal of Orthodontics and Dentofacial Orthopedics, 2002, 122(2): 174-179. DOI:10.1067/mod.2002.124997.
[8] Burstone C J, Pryputniewicz R J. Holographic determination of centers of rotation produced by orthodontic forces[J]. American Journal of Orthodontics and Dentofacial Orthopedics, 1980, 77(4): 396-409. DOI:10.1016/0002-9416(80)90105-0.
[9] Hinterkausen M, Bourauel C, Siebers G, et al. In vitro analysis of the initial tooth mobility in a novel optomechanical set-up[J]. Medical Engineering & Physics, 1998, 20(1): 40-49. DOI:10.1016/s1350-4533(97)00042-8.
[10] Maia L G, de Moraes Maia M L, da Costa Monini A, et al. Photoelastic analysis of forces generated by T-loop springs made with stainless steel or titanium-molybdenum alloy[J]. American Journal of Orthodontics and Dentofacial Orthopedics, 2011, 140(3): 123-128. DOI:10.1016/j.ajodo.2011.03.020.
[11] Liu D X, Wang H N, Wang C L, et al. Modulus of elasticity of human periodontal ligament by optical measurement and numerical simulation[J]. Angle Orthodontist, 2011, 81(2): 229-236. DOI:10.2319/060710-311.1.
[12] Fill T S, Carey J P, Toogood R W, et al. Experimentally determined mechanical properties of, and models for the periodontal ligament: Critical review of current literature[J]. Journal of Dental Biomechanics, 2011, 2(1):312980. DOI:10.4061/2011/312980.
[13] Motoyoshi M, Hirabayashi M, Shimazaki T, et al. An experimental study on mandibular expansion: Increases in arch width and perimeter[J]. European Journal of Orthodontics, 2002, 24(2): 125-130. DOI:10.1093/ejo/24.2.125.
[14] Katona T R, Qian H A. Mechanism of noncontinuous supraosseous tooth eruption[J]. American Journal of Orthodontics and Dentofacial Orthopedics, 2001, 120(3):263-271. DOI:10.1067/mod.2001.116086.
[15] Tanne K. Stress induced in the periodontal tissue at the initial phase of the application of various types of orthodontic forces: 3-dimensional analysis using a finite element method[J]. Journal of Osaka University Dental School, 1983, 28(2):209-261. DOI:10.1016/0002-9416(85)90115-0.
[16] Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 1992, 7(6): 1564-1583. DOI:10.1557/jmr.1992.1564.
[17] Huang H, Tang W, Yan B, et al. Mechanical responses of the periodontal ligament based on an exponential hyperelastic model: A combined experimental and finite element method[J]. Computer Methods in Biomechanics and Biomedical Engineering, 2016, 19(2): 188-198. DOI:10.1080/10255842.2015.1006207.
[18] Ashrafi H, Shariyat M. A. Mathematical approach for describing time-dependent Poisson’s ratios of periodontal ligaments[J]. Journal of Biomedical Physics & Engineering, 2012, 2(3):108-114.
[19] Feng G, Ngan A H W. Effects of creep and thermal drift on modulus measurement using depth-sensing indentation[J]. Journal of Materials Research, 2002, 17(3): 660-668. DOI:10.1557/jmr.2002.0094.
[20] Pietrzak G, Curnier A, Botsis J, et al. A nonlinear elastic model of the periodontal ligament and its numerical calibration for the study of tooth mobility[J]. Computer Methods in Biomechanics and Biomedical Engineering, 2002, 5(2): 91-100. DOI:10.1080/10255840290032117.
[21] Chiba M, Yamane A, Ohshima S, et al. In vitro measurement of regional differences in the mechanical properties of the periodontal ligament in the rat mandibular incisor[J]. Archives of Oral Biology, 1990, 35(2): 153-161. DOI:10.1016/0003-9969(90)90177-c.

Memo

Memo:
Biographies: Yang Yu(1988—), male, graduate; Tang Wencheng(corresponding author), male, doctor, professor, tangwc@seu.edu.cn.
Foundation item: The National Natural Science Foundation of China(No. 51305208).
Citation: Yang Yu, Tang Wencheng. Elastic modulus determination at different levels of periodontal ligament in nanoindentation[J].Journal of Southeast University(English Edition), 2017, 33(1):33-38.DOI:10.3969/j.issn.1003-7985.2017.01.006.
Last Update: 2017-03-20