|Table of Contents|

[1] Li Guo, Dong Lei, Wang Dan, Yan Chenghua, et al. Negative effect improvement of accelerated curingon chloride penetration resistance of ordinary concrete [J]. Journal of Southeast University (English Edition), 2017, 33 (1): 79-85. [doi:10.3969/j.issn.1003-7985.2017.01.013]
Copy

Negative effect improvement of accelerated curingon chloride penetration resistance of ordinary concrete()
普通混凝土加速养护抗氯盐渗透能力的负效应改善
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
33
Issue:
2017 1
Page:
79-85
Research Field:
Materials Sciences and Engineering
Publishing date:
2017-03-30

Info

Title:
Negative effect improvement of accelerated curingon chloride penetration resistance of ordinary concrete
普通混凝土加速养护抗氯盐渗透能力的负效应改善
Author(s):
Li Guo1, Dong Lei1, Wang Dan1, Yan Chenghua2
1State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China
2Jiangsu Dongpu Tubular Pile Co., Ltd., Lianyungang 222346, China
李果1, 董雷1, 王丹1, 颜成华2
1中国矿业大学深部岩土国家重点实验室, 徐州 221116; 2江苏东浦管桩有限公司, 连云港 222346
Keywords:
negative effect improvement chloride penetration resistance ordinary concrete accelerated curing
负效应改善 抗氯盐渗透能力 普通混凝土 加速养护
PACS:
TU528.1
DOI:
10.3969/j.issn.1003-7985.2017.01.013
Abstract:
Four mineral admixture concrete specimens were fabricated to study the negative effect improvements of accelerated curing on the chloride penetration resistance of ordinary concrete. After reaching different initial strengths, the specimens were placed in 40, 60, or 80 ℃ water tanks for accelerated curing. The Coulomb values of the specimens were measured with ASTM C1202 experiment at 28, 100, 200, and 300 d. Partial specimens were also selected for rapid chloride ion migration coefficient and mercury intrusion porosimetry experiments. The experimental results show that the accelerated curing for ordinary concrete linearly deteriorates the chloride penetration resistance, whereas the incorporation of mineral admixtures improves the concrete microscopic pore-structures and negative effects. An upper temperature limit of 60 ℃ of the accelerated curing is suitable for obtaining superior chloride penetration resistance for the mineral admixture concrete. Pre-curing at a normal temperature of 20 ℃ is beneficial for improving the negative effect, which is also alleviated with increasing testing age as a result of the successive hydration of binder materials in concrete.
为了对加速养护引起的普通混凝土抗氯盐渗透能力负效应进行改善, 制作了4种掺矿物掺和料混凝土试件.在达到一定的初始强度后, 试件被分别放入40, 60和80 ℃水槽中进行加速养护.在28, 100, 200和300 d 龄期, 根据ASTM C1202试验标准测定了试件的电通量, 同时还对部分试件进行了快速氯离子扩散系数和压汞实验.实验结果表明, 加速养护会导致普通混凝土的抗氯盐渗透能力线性劣化, 而通过掺加矿物掺合料能够改善混凝土的微观孔隙结构和负效应.对掺矿物掺合料混凝土而言, 60 ℃是获得较优抗氯盐渗透能力的加速养护温度上限.20 ℃常温条件的预养护对减轻此负效应有利, 同时随着测试龄期的增长混凝土中胶凝材料的不断水化负效应也得以减轻.

References:

[1] Feng N Q, Chen L X, Ye H W, et al. Design and application of high performance and super-high performance concrete pipe pile [J]. Cement and Concrete Product, 2010(6):25-28.(in Chinese)
[2] Ramezanianpour A A, Khazali M H, Vosoughi P. Effect of steam curing cycles on strength and durability of SCC: A case study in precast concrete [J]. Construction and Building Materials, 2013, 49:807-813. DOI:10.1016/j.conbuildmat.2013.08.040.
[3] Türkel S, Alabas V. The effect of excessive steam curing on Portand composite cement concrete [J]. Cement and Concrete Research, 2005, 35(2):405-411. DOI:10.1016/j.cemconres.2004.07.038.
[4] Balendran R V, Martin-Buades W H. The influence of high temperature curing on the compressive, tensile and flexural strength of pulverized fuel ash concrete [J]. Building and Environment, 2000, 35(5):415-423. DOI:10.1016/j.cemconres.2004.07.038.
[5] Abd-El.Aziz M A, Abd.El.Aleem S, Heikal M. Physico-chemical and mechanical characteristics of pozzolanic cement pastes and mortars hydrated at different curing temperatures [J]. Construction and Building Materials, 2012, 26(1):310-316. DOI:10.1016/j.conbuildmat.2011.06.026.
[6] Zhao H, Sun W, Wu X M, et al. Effect of initial water-curing period and curing condition on the properties of self-compacting concrete [J]. Materials and Design, 2012, 35:194-200. DOI:10.1016/j.matdes.2011.09.053.
[7] Escalante-García J I, Sharp J H. Effect of temperature on the main clinker phases in Portland cements: Part Ⅰ, neat cements [J]. Cement and Concrete Research, 1998, 28(9):1245-1257. DOI:10.1016/s0008-8846(98)00115-x.
[8] Escalante-García J I, Sharp J H. Effect of temperature on the hydration of the main clinker phases in Portland cements: Part Ⅱ, blend cements [J]. Cement and Concrete Research, 1998, 28(9):1259-1274. DOI:10.1016/s0008-8846(98)00107-0.
[9] Kjellsen K O, Detwiler R J, Gjørv O E. Development of microstructures in plain cement pastes hydrated at different temperatures [J]. Cement and Concrete Research, 1991, 21(1):179-189. DOI:10.1016/0008-8846(91)90044-i.
[10] Kim J K, Moon Y H, Eo S H. Compressive strength development of concrete with different curing time and temperature [J]. Cement and Concrete Research, 1998, 28(12):1761-1773. DOI:10.1016/s0008-8846(98)00164-1.
[11] Aldea C M, Young F, Wang K J, et al. Effects of curing conditions on properties of concrete using slag replacement [J]. Construction and Building Materials, 2000, 30(3):465-472. DOI:10.1016/s0008-8846(00)00200-3.
[12] Hooton R D, Titherington M P. Chloride resistance of high-performance concretes subjected to accelerated curing [J]. Cement and Concrete Research, 2004, 34(9):1561-1567. DOI:10.1016/j.cemconres.2004.03.024.
[13] Sha K, Huang Y C. Influence of pre-curing time on steam curing concrete durability [J]. Low Temperature Architecture Technology, 2011(7):15-16.(in Chinese)
[14] Toutanji H A, Bayasi Z. Effect of curing procedures on properties of silica fume concrete [J]. Cement and Concrete Research, 1999, 29(4):497-501. DOI:10.1016/s0008-8846(98)00197-5.
[15] Li G, Yao F, Liu P, et al. Long-term carbonation resistance of concrete under initial high-temperature curing [J]. Materials and Structures, 2016, 49(7):2799-2806. DOI:10.1617/s11527-015-0686-3.
[16] Khatib J M, Mangat P S. Influence of high-temperature and low-humidity curing on chloride penetration in blended cement concrete [J]. Cement and Concrete Research, 2002, 32(11):1743-1753. DOI:10.1016/s0008-8846(02)00857-8.
[17] Chen H J, Huang S S, Tang C W, et al. Effect of curing environments on strength, porosity and chloride ingress resistance of blast furnace slag cement concretes: A construction site study [J]. Construction and Building Materials, 2012, 35:1063-1070. DOI:10.1016/j.conbuildmat.2012.06.052.
[18] Li G, Yuan Y S, Li F M. Accelerating effect of wetting-drying cycles on steel bar corrosion in concrete[J]. Journal of China University of Mining & Technology(English Edition), 2005, 15(3):197-202.
[19] Li G, Otsuki N, Yuan Y S. Effects of fly ash replacement ratios on concrete reinforcement corrosion[J]. Journal of China University of Mining & Technology, 2009, 38(2):149-154.(in Chinese)
[20] Yan C H, Li G, Xia J W. Influences of initial high temperature curing on long-term compressive strength of precast concrete members [J]. Jiangsu Building Materials, 2014, 5:4-9.(in Chinese)
[21] Shui Z H, Cao B B. Studies about thermal expansion of cement and concrete materials[C]//Proceedings of the 9th National Conference About Cement and Concrete Chemistry and Application Technology. Guangzhou, China, 2005:429-434.(in Chinese)
[22] Detwiler R J, Fapohunda C A, Natale J. Use of supplementary cementing materials to increase the resistance to chloride ion penetration of concretes cured at elevated temperatures [J]. ACI Materials Journal, 1994, 91(1):63-66.
[23] Jones M R, Dhir R K, Magee B J. Concrete containing ternary blended binders: Resistance to chloride ingress and carbonation [J]. Cement and Concrete Research, 1997, 27(6):825-831. DOI:10.1016/s0008-8846(97)00075-6.
[24] Bijen J. Benefits of slag and fly ash [J]. Construction and Building Materials, 1996, 10(5):309-314. DOI:10.1016/0950-0618(95)00014-3.
[25] Erdem T K, Turanli L, Erdogan T Y. Setting time: An important criterion to determine the length of the delay period before steam curing of concrete [J]. Cement and Concrete Research, 2003, 33(5):741-745. DOI:10.1016/s0008-8846(02)01058-x.
[26] Escalante-García J I, Sharp J H. The microstructure and mechanical properties of blended cements hydrated at various temperatures[J]. Cement and Concrete Research, 2001, 31(5):695-702. DOI:10.1016/s0008-8846(01)00471-9.

Memo

Memo:
Biography: Li Guo(1973—), male, doctor, associate professor, guoli@cumt.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.51178455), the Transformation Program of Science and Technology Achievements of Jiangsu Province(No.BA2015133).
Citation: Li Guo, Dong Lei, Wang Dan, et al. Negative effect improvement of accelerated curing on chloride penetration resistance of ordinary concrete[J].Journal of Southeast University(English Edition), 2017, 33(1):79-85.DOI:10.3969/j.issn.1003-7985.2017.01.013.
Last Update: 2017-03-20