|Table of Contents|

[1] Zhao Dezun, Li Jianyong, Cheng Weidong, et al. An improved resampling algorithm for rolling element bearingfault diagnosis under variable rotational speeds [J]. Journal of Southeast University (English Edition), 2017, 33 (2): 150-158. [doi:10.3969/j.issn.1003-7985.2017.02.005]
Copy

An improved resampling algorithm for rolling element bearingfault diagnosis under variable rotational speeds()
变转速条件下基于改进重采样算法的滚动轴承故障诊断
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
33
Issue:
2017 2
Page:
150-158
Research Field:
Mechanical Engineering
Publishing date:
2017-06-30

Info

Title:
An improved resampling algorithm for rolling element bearingfault diagnosis under variable rotational speeds
变转速条件下基于改进重采样算法的滚动轴承故障诊断
Author(s):
Zhao Dezun1, Li Jianyong1, 2, Cheng Weidong1, Wen Weigang1
1School of Mechanical Electronic and Control Engineering, Beijng Jiaotong University, Beijing 100044, China
2 Key Laboratory of Vehicle Advanced Manufacturing, Measuring and Control Technology of Ministry of Education, Beijng Jiaotong University, Beijing 100044, China
赵德尊1, 李建勇1, 2, 程卫东1, 温伟刚1
1北京交通大学机械与电子控制工程学院, 北京100044; 2北京交通大学载运工具先进制造与测控技术教育部重点实验室, 北京100044
Keywords:
rolling element bearing fault diagnosis variable rotational speed equal division impulse-based resampling
滚动轴承 故障诊断 变转速 转速脉冲等分间隔重采样
PACS:
TH113.1
DOI:
10.3969/j.issn.1003-7985.2017.02.005
Abstract:
In order to address the issues of traditional resampling algorithms involving computational accuracy and efficiency in rolling element bearing fault diagnosis, an equal division impulse-based(EDI-based)resampling algorithm is proposed. First, the time marks of every rising edge of the rotating speed pulse and the corresponding amplitudes of faulty bearing vibration signal are determined. Then, every adjacent the rotating pulse is divided equally, and the time marks in every adjacent rotating speed pulses and the corresponding amplitudes of vibration signal are obtained by the interpolation algorithm. Finally, all the time marks and the corresponding amplitudes of vibration signal are arranged and the time marks are transformed into the angle domain to obtain the resampling signal. Speed-up and speed-down faulty bearing signals are employed to verify the validity of the proposed method, and experimental results show that the proposed method is effective for diagnosing faulty bearings. Furthermore, the traditional order tracking techniques are applied to the experimental bearing signals, and the results show that the proposed method produces higher accurate outcomes in less computation time.
为解决传统重采样算法在滚动轴承故障诊断中计算精度和计算效率方面的问题, 提出了一种基于转速脉冲等分间隔的重采样算法.首先, 确定每个转速脉冲上升沿的时间坐标及其对应的故障轴承信号幅值.其次, 均分每个相邻脉冲间的时间间隔, 获取均分时间坐标并利用上述均分时标对故障轴承信号进行插值以获取相应的故障轴承信号幅值.最后, 将每个相邻脉冲间的时间点及幅值点按顺序排序, 进一步将时间坐标转换成角域坐标从而得到故障轴承的重采样信号.对升速及降速下故障轴承信号的处理结果显示所提算法可以有效地应用于变转速条件下的滚动轴承故障诊断.此外, 利用传统的计算阶比分析方法对上述实验信号进行分析, 对比结果表明所提算法可在更短的时间内获得精度更高的结果.

References:

[1] Zhang W, Jia M P, Zhu L. An adaptive Morlet wavelet filter method and its application in detecting early fault feature of ball bearings[J]. Journal of Southeast University: Natural Science Edition, 2016, 46(3):457-463. DOI:10.3969/j.issn.1001-0505.2016.03.001. (in Chinese)
[2] Ou L, Yu D J, Yang H J. A new rolling bearing fault diagnosis method based on GFT impulse component extraction[J]. Mechanical System and Signal Processing, 2016, 81:162-182.DOI:10.1016/j.ymssp.2016.03.009.
[3] Wen W G, Fan Z Y, Karg D, et al. Rolling element bearing fault diagnosis based on multiscale general fractal features [J]. Shock and Vibration, 2015, 2015:167902-1-167902-9. DOI:10.1155/2015/167902.
[4] Wang Y, Xu G, Zhang Q, et al. Rotating speed isolation and its application to rolling element bearing fault diagnosis under large speed variation conditions [J]. Journal of Sound and Vibration, 2015, 348:381-369. DOI:10.1016/j.jsv.2015.03.018.
[5] Ding X, He Q, Luo N. A fusion feature and its improvement based on locality preserving projections for rolling element bearing fault classification[J]. Journal of Sound and Vibration, 2015, 335:367-383. DOI:10.1016/j.jsv.2014.09.026.
[6] Saidi L, Ali J B, Fnaiech F. Bi-spectrum based-EMD applied to the non-stationary vibration signals for bearing faults diagnosis[J]. ISA Transactions, 2014, 53(5): 1650-1660. DOI:10.1016/j.isatra.2014.06.002.
[7] Zhao D Z, Li J Y, Cheng W D. Feature extraction of faulty rolling element bearing under variable rotational speed and gear interferences conditions[J]. Shock and Vibration, 2015, 2015:425989-1-425989-9. DOI:10.1155/2015/425989.
[8] Fyfe K R, Munck E D S. Analysis of computed order tracking[J]. Mechanical System and Signal Processing, 1997, 11(2):187-205. DOI:10.1006/mssp.1996.0056.
[9] Wang K S, Heyns P S. The combined use of order tracking techniques for enhanced Fourier analysis of order components[J]. Mechanical Systems and Signal Processing, 2011, 25(3): 803-811.DOI:10.1016/j.ymssp.2010.10.005.
[10] Bossley K M, Mckendrick R J, Harris C J, et al. Hybird computed order tracking [J]. Mechanical Systems and Signal Processing, 1999, 13(4):627-641. DOI:10.1006/mssp.1999.1225.
[11] Gao Y, Guo Y, Chi Y L, et al. Order tracking based on robust peak search instantaneous frequency estimation [J]. Journal of Physics: Conference Series, 2006, 48:479-484. DOI:10.1088/1742-6596/48/1/091.
[12] Coats M D, Randall R B. Order tracking with and without a tacho signal for gear fault diagnostics [C]//Proceedings of Acoustics. Fremantle, Australia, 2012:1-8.
[13] Tse P W, Peng Y H, Yan R. Wavelet analysis and envelope detection for rolling element bearing fault diagnosis—Their effectiveness and flexibilities [J]. Journal of Vibration and Acoustics, 2001, 123: 303-310.DOI: 10.1115/1.1379745.
[14] Brandt A, Lagö T, Ahlin K, et al. Main principles and limitations of current order tracking methods [J]. Sound and Vibration, 2005, 2005:19-22.
[15] Saavedra P N, Rodriguez C G. Accurate assessment of computed order tracking [J].Shock and Vibration, 2006, 13(1):13-21.DOI:10.1155/2006/838097.
[16] Wang T, Ling M, Li J, et al. Rolling element bearing fault diagnosis via fault characteristic order(FCO)analysis [J]. Mechanical System and Signal Processing, 2014, 45(1):139-153. DOI:10.1016/j.ymssp.2013.11.011.
[17] Randall R B, Antoni J. Rolling element bearing diagnostics—A tutorial [J].Mechanical Systems and Signal Processing, 2011, 25(2):485-520. DOI:10.1016/j.ymssp.2010.07.017.

Memo

Memo:
Biographies: Zhao Dezun(1990—), male, graduate; Cheng Weidong(corresponding author), male, doctor, professor, wdcheng@bjtu.edu.cn.
Foundation item: Fundamental Research Funds for the Central Universities(No.2016JBM051).
Citation: Zhao Dezun, Li Jianyong, Cheng Weidong, et al. An improved resampling algorithm for rolling element bearing fault diagnosis under variable rotational speeds[J].Journal of Southeast University(English Edition), 2017, 33(2):150-158.DOI:10.3969/j.issn.1003-7985.2017.02.005.
Last Update: 2017-06-20