[1] Zhang W, Jia M P, Zhu L. An adaptive Morlet wavelet filter method and its application in detecting early fault feature of ball bearings[J]. Journal of Southeast University: Natural Science Edition, 2016, 46(3):457-463. DOI:10.3969/j.issn.1001-0505.2016.03.001. (in Chinese)
[2] Ou L, Yu D J, Yang H J. A new rolling bearing fault diagnosis method based on GFT impulse component extraction[J]. Mechanical System and Signal Processing, 2016, 81:162-182.DOI:10.1016/j.ymssp.2016.03.009.
[3] Wen W G, Fan Z Y, Karg D, et al. Rolling element bearing fault diagnosis based on multiscale general fractal features [J]. Shock and Vibration, 2015, 2015:167902-1-167902-9. DOI:10.1155/2015/167902.
[4] Wang Y, Xu G, Zhang Q, et al. Rotating speed isolation and its application to rolling element bearing fault diagnosis under large speed variation conditions [J]. Journal of Sound and Vibration, 2015, 348:381-369. DOI:10.1016/j.jsv.2015.03.018.
[5] Ding X, He Q, Luo N. A fusion feature and its improvement based on locality preserving projections for rolling element bearing fault classification[J]. Journal of Sound and Vibration, 2015, 335:367-383. DOI:10.1016/j.jsv.2014.09.026.
[6] Saidi L, Ali J B, Fnaiech F. Bi-spectrum based-EMD applied to the non-stationary vibration signals for bearing faults diagnosis[J]. ISA Transactions, 2014, 53(5): 1650-1660. DOI:10.1016/j.isatra.2014.06.002.
[7] Zhao D Z, Li J Y, Cheng W D. Feature extraction of faulty rolling element bearing under variable rotational speed and gear interferences conditions[J]. Shock and Vibration, 2015, 2015:425989-1-425989-9. DOI:10.1155/2015/425989.
[8] Fyfe K R, Munck E D S. Analysis of computed order tracking[J]. Mechanical System and Signal Processing, 1997, 11(2):187-205. DOI:10.1006/mssp.1996.0056.
[9] Wang K S, Heyns P S. The combined use of order tracking techniques for enhanced Fourier analysis of order components[J]. Mechanical Systems and Signal Processing, 2011, 25(3): 803-811.DOI:10.1016/j.ymssp.2010.10.005.
[10] Bossley K M, Mckendrick R J, Harris C J, et al. Hybird computed order tracking [J]. Mechanical Systems and Signal Processing, 1999, 13(4):627-641. DOI:10.1006/mssp.1999.1225.
[11] Gao Y, Guo Y, Chi Y L, et al. Order tracking based on robust peak search instantaneous frequency estimation [J]. Journal of Physics: Conference Series, 2006, 48:479-484. DOI:10.1088/1742-6596/48/1/091.
[12] Coats M D, Randall R B. Order tracking with and without a tacho signal for gear fault diagnostics [C]//Proceedings of Acoustics. Fremantle, Australia, 2012:1-8.
[13] Tse P W, Peng Y H, Yan R. Wavelet analysis and envelope detection for rolling element bearing fault diagnosis—Their effectiveness and flexibilities [J]. Journal of Vibration and Acoustics, 2001, 123: 303-310.DOI: 10.1115/1.1379745.
[14] Brandt A, Lagö T, Ahlin K, et al. Main principles and limitations of current order tracking methods [J]. Sound and Vibration, 2005, 2005:19-22.
[15] Saavedra P N, Rodriguez C G. Accurate assessment of computed order tracking [J].Shock and Vibration, 2006, 13(1):13-21.DOI:10.1155/2006/838097.
[16] Wang T, Ling M, Li J, et al. Rolling element bearing fault diagnosis via fault characteristic order(FCO)analysis [J]. Mechanical System and Signal Processing, 2014, 45(1):139-153. DOI:10.1016/j.ymssp.2013.11.011.
[17] Randall R B, Antoni J. Rolling element bearing diagnostics—A tutorial [J].Mechanical Systems and Signal Processing, 2011, 25(2):485-520. DOI:10.1016/j.ymssp.2010.07.017.