[1] Hobbs N B. Mire morphology and the properties and behaviour of some British and foreign peats[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 1986, 19(1): 7-80. DOI:10.1144/gsl.qjeg.1986.019.01.02.
[2] Timoney M J, McCabe B A, Bell A L. Experiences of dry soil mixing in highly organic soils[J]. Proceedings of the Institution of Civil Engineers—Ground Improvement, 2012, 165(1): 3-14. DOI:10.1680/grim.2012.165.1.3.
[3] Kujala K, Mäkikyrö M, Lehto O. Effect of humus on the binding reaction in stabilized soils[C]//Grounting and Deep Mixing. Balkema, Rotterdam, 1996: 415-420.
[4] Tastan E O, Edil T B, Benson C H, et al. Stabilization of organic soils with fly ash[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(9): 819-833. DOI:10.1061/(asce)gt.1943-5606.0000502.
[5] Hayashi H, Nishimoto S. Strength characteristic of stabilized peat using different types of binders[C/OL]//Proceedings of the International Conference of Deep Mixing Best Practices and Recent Advances, Deep Mixing. 2005. http://thesis.ceri.go.jp/center/doc/thesis/jiban/0013772000.pdf.
[6] Kolay P K, Rahman M A. Physico-geotechnical properties of peat and its stabilisation[J]. Proceedings of the Institution of Civil Engineers-Ground Improvement, 2016, 169(3): 206-216. DOI:10.1680/jgrim.15.00025.
[7] American Society for Testing and Materials. ASTM D.2487 Standard practice for classification of soils for engineering purposes(unified soil classification system)[S]. West Conshohocken, PA, USA: ASTM International, 2006.
[8] American Society for Testing and Materials. ASTM D4318-17 Standard test methods for liquid limit, plastic limit, and plasticity index of soils[S]. West Conshohocken, PA, USA: ASTM International, 2000.
[9] American Society for Testing and Materials. ASTM D. 2166 Standard test method for unconfined compressive strength of cohesive soil[S]. West Conshohocken, PA, USA: ASTM International, 2016.
[10] American Society for Testing and Materials. ASTM D. 4972-01 Standard test method for pH of soils[S]. West Conshohocken, PA, USA: ASTM International, 2001.
[11] Axelsson K, Johansson S E, Andersson R. Stabilization of organic soils by cement and puzzolanic reactions—feasibility study[R]. Linkoping, Sweden: Swedish Deep Stabilization Research Center, 2002.
[12] Clare K E, Sherwood P T. The effect of organic matter on the setting of soil-cement mixtures[J]. Journal of Applied Chemistry, 1954, 4(11): 625-630.
[13] Young J F. A review of the mechanisms of set-retardation in Portland cement pastes containing organic admixtures[J]. Cement and Concrete Research, 1972, 2(4): 415-433.
[14] Odler I, Colán-Subauste J. Investigations on cement expansion associated with ettringite formation[J]. Cement and Concrete Research, 1999, 29(5): 731-735. DOI:10.1016/s0008-8846(99)00048-4.
[15] Martínez-Ramírez S, Gutierrez-Contreras R, Husillos-Rodriguez N, et al. In-situ reaction of the very early hydration of C3 A-gypsum-sucrose system by Micro-Raman spectroscopy[J]. Cement and Concrete Composites, 2016, 73: 251-256. DOI:10.1016/j.cemconcomp.2016.07.020.
[16] Che D R, Luo C Y, Shen S L. Relationship between pH value and electrical conductivity and strength characteristics of cement treated Shanghai clayey soil[J]. Rock & Soil Mechanics, 2012, 33(12):3611-3615.
[17] Babushkin V I, Matveev G M, Mchedlov-Petrosian O P. Thermodynamics of silicates[M]. Springer, 1985:75-82.
[18] Tremblay H, Duchesne J, Locat J, et al. Influence of the nature of organic compounds on fine soil stabilization with cement[J]. Canadian Geotechnical Journal, 2002, 39(3): 535-546. DOI:10.1139/t02-002.
[19] Huang X, Xu S, Ning J G. Experimental research on stabilized soft soils by alumina bearing modifier[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(1): 156-161.