|Table of Contents|

[1] Dong Xinxin, Jin BaoshengWang Yanyan, Niu Miaomiao,. Experiments on Ni/γ-Al2O3 catalyst for improving lowerheating value of biomass gasification fuel gas via methanation [J]. Journal of Southeast University (English Edition), 2017, 33 (4): 448-456. [doi:10.3969/j.issn.1003-7985.2017.04.010]
Copy

Experiments on Ni/γ-Al2O3 catalyst for improving lowerheating value of biomass gasification fuel gas via methanation()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
33
Issue:
2017 4
Page:
448-456
Research Field:
Chemistry and Chemical Engineering
Publishing date:
2017-12-30

Info

Title:
Experiments on Ni/γ-Al2O3 catalyst for improving lowerheating value of biomass gasification fuel gas via methanation
Author(s):
Dong Xinxin Jin BaoshengWang Yanyan Niu Miaomiao
Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
Keywords:
Ni-based catalyst methanation biomass gasification fuel gas lower heating value
PACS:
O643.3
DOI:
10.3969/j.issn.1003-7985.2017.04.010
Abstract:
Ni-based catalysts supported by γ-Al2O3 were prepared for improving the lower heating value(LHV)of biomass gasification fuel gas through methanation. Prior to the performance tests, the physico-chemical properties of the catalyst samples were characterized by N2 isothermal adsorption/desorption, X-ray diffraction(XRD)and a scanning electron microscope(SEM). Afterwards, a series of experiments were carried out to investigate the catalytic performance and the results show that catalysts with 15% and 20% Ni loadings have better methanation catalytic effect than those with 5% and 10% Ni loadings in terms of elevating the LHV of biomass gasification fuel gas. Moreover, controllable influential factors such as the reaction temperature, the H2/CO ratio and the water content occupy an important position in the methanation of biomass gasification fuel gas. 15Ni/γ-Al2O3 and 20Ni/γ-Al2O3 catalysts have a higher CO conversion and CH4 selectivity at 350 ℃ and the LHV of biomass gasification fuel gas can be largely increased by 34.3 % at 350 ℃. Higher H2/CO ratio and a lower water content are more beneficial for improving the LHV of biomass gasification fuel gas when considering the combination of both CO conversion and CH4 selectivity. This is due to the fact that a higher H2/CO ratio and lower water content can increase the extent of the methanation reaction.

References:

[1] Hosseini S E, Wahid M A. Development of biogas combustion in combined heat and power generation [J]. Renewable and Sustainable Energy Reviews, 2014, 40: 868-875. DOI:10.1016/j.rser.2014.07.204.
[2] Pérez N P, Machin E B, Pedroso D T, et al. Biomass gasification for combined heat and power generation in the Cuban context: Energetic and economic analysis [J]. Applied Thermal Engineering, 2015, 90: 1-12. DOI:10.1016/j.rser.2014.07.204.
[3] Biagini E, Barontini F, Tognotti L. Development of a bi-equilibrium model for biomass gasification in a downdraft bed reactor [J]. Bioresource Technology, 2016, 201: 156-165. DOI:10.1016/j.biortech.2015.11.057.
[4] Berrueco C, Recari J, Abelló S, et al. Experimental investigation of solid recovered fuel(SRF)gasification: Effect of temperature and equivalence ratio on process performance and release of minor contaminants [J]. Energy & Fuels, 2015, 29(11): 7419-7427. DOI:10.1021/acs.energyfuels.5b02032.
[5] Kwapinska M, Xue G, Horvat A, et al. Fluidized bed gasification of torrefied and raw grassy biomass(miscanthus×gigantenus). The effect of operating conditions on process performance [J]. Energy & Fuels, 2015, 29(11): 7290-7300. DOI:10.1021/acs.energyfuels.5b02032.
[6] Biagini E, Barontini F, Tognotti L. Gasification of agricultural residues in a demonstrative plant: Vine pruning and rice husks [J]. Bioresource Technology, 2015, 194: 36-42. DOI:10.1016/j.biortech.2015.07.016.
[7] Barisano D, Canneto G, Nanna F, et al. Steam/oxygen biomass gasification at pilot scale in an internally circulating bubbling fluidized bed reactor [J]. Fuel Processing Technology, 2016, 141: 74-81. DOI:10.1016/j.fuproc.2015.06.008.
[8] Balu E, Lee U, Chung J N. High temperature steam gasification of woody biomass—A combined experimental and mathematical modeling approach [J]. International Journal of Hydrogen Energy, 2015, 40(41): 14104-14115. DOI:10.1016/j.ijhydene.2015.08.085.
[9] Yu H, Li Z, Yang X, et al. Experimental research on oxygen-enriched gasification of straw in an entrained-flow gasifier [J]. Journal of Renewable and Sustainable Energy, 2013, 5(5): 053127. DOI:10.1063/1.4822260.
[10] Wang Z, He T, Qin J, et al. Gasification of biomass with oxygen-enriched air in a pilot scale two-stage gasifier [J]. Fuel, 2015, 150: 386-393. DOI:10.1016/j.fuel.2015.02.056.
[11] Kopyscinski J, Schildhauer T J, Biollaz S M A. Production of synthetic natural gas(SNG)from coal and dry biomass—A technology review from 1950 to 2009 [J]. Fuel, 2010, 89(8): 1763-1783. DOI:10.1016/j.fuel.2010.01.027.
[12] Rönsch S, Schneider J, Matthischke S, et al. Review on methanation—From fundamentals to current projects [J]. Fuel, 2016, 166: 276-296. DOI:10.1016/j.fuel.2015.10.111.
[13] Kim W, Koo K Y, Lee H J, et al. Highly dispersed nickel catalyst promoted by precious metals for CO selective methanation [J]. International Journal of Hydrogen Energy, 2015, 40(32): 10033-10040. DOI:10.1016/j.ijhydene.2015.06.033.
[14] Tada S, Kikuchi R, Wada K, et al. Long-term durability of Ni/TiO2 and Ru-Ni/TiO2 catalysts for selective CO methanation [J]. Journal of Power Sources, 2014, 264: 59-66. DOI:10.1016/j.ijhydene.2015.06.033.
[15] Ma S, Tan Y, Han Y. Water-gas shift coupling with methanation over MOxx modified nanorod-NiO/γ-Al2O3 catalysts [J]. Journal of Industrial and Engineering Chemistry, 2011, 17(4): 723-726. DOI:10.1016/j.jiec.2011.05.014.
[16] Kiendl I, Klemm M, Clemens A, et al. Dilute gas methanation of synthesis gas from biomass gasification [J]. Fuel, 2014, 123: 211-217. DOI:10.1016/j.fuel.2014.01.036.
[17] Gao J J, Liu Q, Gu F N, et al. Recent advances in methanation catalysts for the production of synthetic natural gas [J]. RSC Advances, 2015, 5(29): 22759-22776. DOI:10.1039/c4ra16114a.
[18] Zhou G, Wu T, Zhang H, et al. Carbon dioxide methanation on ordered mesoporous Co/KIT-6 catalyst [J]. Chemical Engineering Communications, 2014, 201(2): 233-240. DOI:10.1080/00986445.2013.766881.
[19] Abdel-Mageed A M, Eckle S, Behm R J. High selectivity of supported Ru catalysts in the selective CO methanation-water makes the difference [J]. Journal of the American Chemical Society, 2015, 137(27): 8672-8675. DOI:10.1021/jacs.5b03689.
[20] Escobar M, Gracia F, Karelovic A, et al. Kinetic and in situ FTIR study of CO methanation on a Rh/Al2O3 catalyst [J]. Catalysis Science & Technology, 2015, 5(9): 4532-4541. DOI:10.1039/c5cy00676g.
[21] Lu X, Gu F, Liu Q, et al. VOxx promoted Ni catalysts supported on the modified bentonite for CO and CO2 methanation [J]. Fuel Processing Technology, 2015, 135: 34-46. DOI:10.1016/j.fuproc.2014.10.009.
[22] Liu Y, Zhu L, Wang X, et al. Catalytic methanation of syngas over Ni-based catalysts with different supports [J]. Chinese Journal of Chemical Engineering, 2017, 25(5): 602-608. DOI:10.1016/j.cjche.2016.10.019.
[23] Ding M, Tu J, Wang T, et al. Bio-syngas methanation towards synthetic natural gas(SNG)over highly active Al2O3-CeO2 supported Ni catalyst [J]. Fuel Processing Technology, 2015, 134: 480-486. DOI:10.1016/j.fuproc.2015.03.006.
[24] Meshkani F, Rezaei M. Mesoporous Ba-promoted chromium free Fe2O3-Al2O3-NiO catalyst with low methanation activity for high temperature water gas shift reaction [J]. Catalysis Communications, 2015, 58: 26-29. DOI:10.1016/j.catcom.2014.08.028.
[25] Mei Z, Li Y, Fan M, et al. The effects of bimetallic Co-Ru nanoparticles on Co/RuO2/Al2O3 catalysts for the water gas shift and methanation [J]. International Journal of Hydrogen Energy, 2014, 39(27): 14808-14816. DOI:10.1016/j.ijhydene.2014.07.072.
[26] Bai X, Wang S, Sun T, et al. The sintering of Ni/Al2O3 methanation catalyst for substitute natural gas production [J]. Reaction Kinetics, Mechanisms and Catalysis, 2014, 112(2): 437-451. DOI:10.1007/s11144-014-0700-8.
[27] Chen G Y, Liu C, Ma W C, et al. Catalytic cracking of tar from biomass gasification over a HZSM-5-supported Ni-MgO catalyst [J]. Energy & Fuels, 2015, 29(12): 7969-7974. DOI:10.1021/acs.energyfuels.5b00830.
[28] Arbeláez O, Reina T R, Ivanova S, et al. Mono and bimetallic Cu-Ni structured catalysts for the water gas shift reaction [J]. Applied Catalysis A: General, 2015, 497: 1-9. DOI:10.1016/j.apcata.2015.02.041.

Memo

Memo:
Biographies: Dong Xinxin(1991—), male, graduate; Jin Baosheng(corresponding author), male, professor, bsjin@seu.edu.cn.
Foundation item: The International S&T Cooperation Program of China(No.2014DFE70150).
Citation: Dong Xinxin, Jin Baosheng, Wang Yanyan, et al. Experiments on Ni/γ-Al2O3 catalyst for improving lower heating value of biomass gasification fuel gas via methanation[J].Journal of Southeast University(English Edition), 2017, 33(4):448-456.DOI:10.3969/j.issn.1003-7985.2017.04.010.
Last Update: 2017-12-20