|Table of Contents|

[1] Zhang Qingdong, Ni Changjiang, Jing Tao, Wu Junjiao, et al. 3D numerical simulation of high pressure squeezing processwith revised Drucker-Prager/Cap model [J]. Journal of Southeast University (English Edition), 2017, 33 (4): 473-477. [doi:10.3969/j.issn.1003-7985.2017.04.013]
Copy

3D numerical simulation of high pressure squeezing processwith revised Drucker-Prager/Cap model()
基于修正Drucker-Prager/Cap模型的高压压实过程三维数值模拟
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
33
Issue:
2017 4
Page:
473-477
Research Field:
Materials Sciences and Engineering
Publishing date:
2017-12-30

Info

Title:
3D numerical simulation of high pressure squeezing processwith revised Drucker-Prager/Cap model
基于修正Drucker-Prager/Cap模型的高压压实过程三维数值模拟
Author(s):
Zhang Qingdong1 Ni Changjiang1 Jing Tao1 Wu Junjiao1 Makino Hiroyasu2
1 School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
2 Sintokogio Ltd, Nagoya 450-6424, Japan
张庆东1 倪长江1 荆涛1 吴浚郊1 牧野泰育2
1清华大学材料学院, 北京 100084; 2新东工业株式会社, 名古屋 450-6424
Keywords:
green sand aeration sand filling-high pressure squeeze molding revised Drucker-Prager/Cap model numerical simulation
湿黏土砂 低压射砂-高压压实造型 修正的Drucker-Prager/Cap模型 数值模拟
PACS:
TG221
DOI:
10.3969/j.issn.1003-7985.2017.04.013
Abstract:
In order to investigate the sand mold strength after the aeration sand filling-high pressure squeeze molding process, a three-dimentional(3D)numerical simulation was introduced. The commercial finite element method(FEM)software ABAQUS combined with a revised Drucker-Prager/Cap model was used to simulate the squeeze compaction process. Additionally, the sand bulk density after the aeration sand filling process was tested by a specially designed experiment, which divided the whole sand bulk in the molding chamber into 5×9 regions and it was used as the input to simulate the squeeze process. During the simulation process, the uniform modeling simulation and the partition modeling simulation methods were used and the 3D numerical simulation results were compared with correlative benchmark testings. From the 3D numerical simulation results, it can be concluded that the uniform sand bulk density distribution can obtain a high quality sand mold and the revised Drucker-Prager/Cap model is suitable for handling the situation with the complex pattern. The 3D numerical simulation results can predict well the sand mold strength distribution and can be used as guidelines for the production practice.
为了研究低压射砂-高压压实造型后的砂型强度, 引入三维数值模拟方法.应用商业化有限元软件ABAQUS并结合修正的Drucker-Prager/Cap模型对高压压实过程进行了模拟.同时, 基于特殊设计的实验, 将砂箱分成5×9的区域后分别测量了射砂后造型室内型砂的堆积密度, 并将其作为压实模拟过程的输入参数.在模拟过程中, 分别使用均一密度和分区建模2种方法, 并将三维数值模拟结果和相关联标定实验做了对比.三维数值模拟结果表明:均匀的型砂密度可得到高质量的砂型, 而修正的Drucker-Prager/Cap模型更适合处理采用复杂模具的情况.三维数值模拟结果能够较好地预测砂型强度分布, 同时对实际生产有一定的指导作用.

References:

[1] Hirata M, Sugita K. New sand filling method in flaskless molding and its controls[J]. American Foundrymens Society Transactions, 2005, 113: 319-326.
[2] Ni C J, Zhang Q D, Jing T, et al. 3D numerical simulation of aeration sand filling-high pressure squeeze molding method[C]//The 71st World Foundry Congress. Bilbao, Spain, 2014.
[3] Hirata M, Takasu S, Makino H. Application of aeration sand filling, squeeze balance control and synchronised pattern drawing to flaskless moulding process[J]. International Journal of Cast Metals Research, 2008, 21(1/2/3/4): 246-250. DOI:10.1179/136404608x362034.
[4] Makino H, Maeda Y, Nomurat H. Force analysis in air-flow press moulding using the distinct element method[J]. International Journal of Cast Metals Research, 1997, 10(3): 171-175. DOI:10.1080/13640461.1997.11819232.
[5] Liu X, Xu X. Modelling of dense gas-particle flow in a circulating fluidized bed by distinct cluster method(DCM)[J]. Powder Technology, 2009, 195(3): 235-244. DOI:10.1016/j.powtec.2009.06.007.
[6] Li H, Wu J J, Huang T Y, et al. 3D numerical simulation for aeration sand filling process[C]//The 69th World Foundry Congress. Hangzhou, China, 2010.
[7] Li H, Wu J J, Huang T Y, et al. A new numerical simulation model for high pressure squeezing moulding[J]. China Foundry, 2011, 8(1): 25-29.
[8] Mizuno E, Chen W. Cap models for clay strata to footing loads[J]. Computers & Structures, 1983, 17(4): 511-528. DOI:10.1016/0045-7949(83)90046-9.
[9] Shoop S, Affleck R. Cap plasticity model for thawing soil[C]//Geo-Frontiers Congress 2005. Austin, TX, USA, 2005: 1-11. DOI:10.1061/40786(165)8.
[10] Abaqus A. 6.13 Analysis user’s manual[M]. Providence, IR, USA: Simulia Corp, 2013.
[11] Han L H, Elliott J A, Bentham A C, et al. A modified Drucker-Prager Cap model for die compaction simulation of pharmaceutical powders[J]. International Journal of Solids and Structures, 2008, 45(10): 3088-3106. DOI:10.1016/j.ijsolstr.2008.01.024.
[12] Li H. The experiment study and numerical simulation on low pressure shoot-high pressure squeeze moulding[D]. Beijing: Department of Mechanical Engineering, Tsinghua University, 2005.(in Chinese)
[13] Xie B. A study on the green sand stress field in squeeze moulding and air impact moulding [D]. Beijing: Department of Mechanical Engineering, Tsinghua University, 1993.(in Chinese)
[14] Yang G. Tests and numerical analysis on loose moulding sand compaction process under squeeze and air impact conditions [D]. Beijing: Department of Civil Engineering, Tsinghua University, 1995.(in Chinese)

Memo

Memo:
Biographies: Zhang Qingdong(1990—), male, graduate; Jing Tao(corresponding author), male, doctor, professor, jingtao@tsinghua.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.51575304), the National Science and Technology Major Project of the Ministry of Science and Technology of China(No.2012ZX04012011).
Citation: Zhang Qingdong, Ni Changjiang, Jing Tao, et al. 3D numerical simulation of high pressure squeezing process with revised Drucker-Prager/Cap model[J].Journal of Southeast University(English Edition), 2017, 33(4):473-477.DOI:10.3969/j.issn.1003-7985.2017.04.013.
Last Update: 2017-12-20