|Table of Contents|

[1] Liu Xin, Sun Beibei, Li Lie, Chen Jiandong, et al. Nonlinear identification and characterizationof structural joints based on vibration transmissibility [J]. Journal of Southeast University (English Edition), 2018, 34 (1): 36-42. [doi:10.3969/j.issn.1003-7985.2018.01.006]
Copy

Nonlinear identification and characterizationof structural joints based on vibration transmissibility()
基于振动传递的结构连接部非线性识别与表征
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
34
Issue:
2018 1
Page:
36-42
Research Field:
Mechanical Engineering
Publishing date:
2018-03-20

Info

Title:
Nonlinear identification and characterizationof structural joints based on vibration transmissibility
基于振动传递的结构连接部非线性识别与表征
Author(s):
Liu Xin Sun Beibei Li Lie Chen Jiandong Xue Fei
School of Mechanical Engineering, Southeast University, Nanjing 211189, China
刘鑫 孙蓓蓓 李烈 陈建栋 薛飞
东南大学机械工程学院, 南京 211189
Keywords:
structural joint vibration transmissibility nonlinear identification harmonic balance method
结构连接 振动传递 非线性识别 谐波平衡法
PACS:
TH113.1
DOI:
10.3969/j.issn.1003-7985.2018.01.006
Abstract:
In order to investigate the nonlinear characteristics of structural joint, the experimental setup with a jointed mass system is established for dynamic characterization analysis and vibration prediction, and a corresponding nonlinearity identification method is studied. First, the sine-sweep vibration test with different base excitation levels are applied to the structural joint system to study the dominant modal of mass rigid motion. Then, based on the harmonic balance method principle, the measured vibration transmissibilities are utilized for nonlinearity identification using different excitation levels. Experimental results show that nonlinear spring and damping force can be represented by a polynomial order approximation. The identified nonlinear stiffness and damping force can predict the system’s response, and they can reveal the shifts of resonant frequency or damping due to discontinuity of contact mechanisms within a certain range.
为了研究结构连接部的非线性振动特性, 利用螺栓连接质量系统进行实验平台搭建, 进行了动力学特性分析和响应预测, 并讨论了非线性动力学参数识别问题.首先, 通过不同的基础激励完成系统的正弦扫频实验及模态测试, 以研究集中质量的刚体运动.然后, 基于谐波平衡法原理, 利用不同基础激励下的振动测试结果, 对不同激励力下的连接部非线性进行识别.试验研究结果表明, 连接部的非线性刚度和阻尼力可以通过多项式的形式表达和逼近.识别的非线性刚度和阻尼力可对螺栓结合面的振动响应进行预测, 并可在一定范围内反映由于连接部接触引起的振动非线性, 以及峰值频率偏移和阻尼硬化的现象.

References:

[1] Eriten M, Kurt M, Luo G, et al. Nonlinear system identification of frictional effects in a beam with a bolted joint connection[J]. Mechanical Systems and Signal Processing, 2013, 39(1): 245-264.DOI:10.1016/j.ymssp.2013.03.003.
[2] Cai L. Review on dynamic properties of bolted joints[J]. Journal of Mechanical Engineering, 2013, 49(9): 158.DOI:10.3901/jme.2013.09.158.
[3] Luo L, Sun B B, Chen H X. Parametric modeling and lightweight optimization for cross beam of punch based on grid deformation and agent model[J]. Journal of Southeast University(Natural Science Edition), 2015, 45(1):56-62. DOI:10.3969/j.issn.1001-0505.2015.01.011. (in Chinese)
[4] Chen C S, Wang Q, Liu R F, et al. Effect of bolt connection on structural vibration modes and transfer characteristics[J]. Journal of Vibration & Shock, 2014, 33(12):42-47.(in Chinese)
[5] Luan Y, Guan Z Q, Cheng G D, et al. A simplified nonlinear dynamic model for the analysis of pipe structures with bolted flange joints[J]. Journal of Sound and Vibration, 2012, 331(2): 325-344. DOI:10.1016/j.jsv.2011.09.002.
[6] Wang Y, Li F M. Nonlinear dynamics modeling and analysis of two rods connected by a joint with clearance[J].Applied Mathematical Modelling, 2015, 39(9): 2518-2527. DOI:10.1016/j.apm.2014.10.056.
[7] Cai L. Identification of nonlinear joint parameters with force-state mapping method[J]. Journal of Mechanical Engineering, 2011, 47(7): 65-72. DOI:10.3901/jme.2011.07.065.
[8] Wei H T, Kong X R, Wang B L, et al. Non-linear dynamic response of a beam with bolted joint based on modal shape transfer[J]. Journal of Vibration & Shock, 2014, 33(12):42-47.(in Chinese)
[9] Heller L, Foltête E, Piranda J. Experimental identification of nonlinear dynamic properties of built-up structures[J]. Journal of Sound and Vibration, 2009, 327(1): 183-196. DOI:10.1016/j.jsv.2009.06.008.
[10] Guo H, Zhang J, Liu R, et al. Effects of joint on dynamics of space deployable structure[J]. Chinese Journal of Mechanical Engineering, 2013, 26(5): 861-872. DOI:10.3901/cjme.2013.05.861.
[11] Jalali H, Ahmadian H, Mottershead J E. Identification of nonlinear bolted lap-joint parameters by force-state mapping[J]. International Journal of Solids and Structures, 2007, 44(25): 8087-8105. DOI:10.1016/j.ijsolstr.2007.06.003.
[12] Ahmadian H, Jalali H. Identification of bolted lap joints parameters in assembled structures[J]. Mechanical Systems and Signal Processing, 2007, 21(2): 1041-1050. DOI:10.1016/j.ymssp.2005.08.015.
[13] Liu X, Sun B, Xue F, et al. Identification of nonlinear parameter of mechanical joint system based on vibration tests[J]. Journal of Vibration Engineering and Technologies, 2016, 4(5):475-482.
[14] Wang J M, Zheng C L. Nonlinear analytical modeling and analysis for bolted joint structures[J]. Journal of Vibration and Shock, 2013, 32(20):5-8.(in Chinese)

Memo

Memo:
Biographies: Liu Xin(1987—), male, Ph.D.candidate; Sun Beibei(corresponding author), female, doctor, professor, bbsun@seu.edu.cn.
Foundation items: The Major National Science and Technology Project(No.2012ZX04002032, 2013ZX04012032), Graduate Scientific Research Innovation Project of Jiangsu Province(No.KYLX-0096).
Citation: Liu Xin, Sun Beibei, Li Lie, et al.Nonlinear identification and characterization of structural joints based on vibration transmissibility[J].Journal of Southeast University(English Edition), 2018, 34(1):36-42.DOI:10.3969/j.issn.1003-7985.2018.01.006.
Last Update: 2018-03-20