[1] Carlson J D, Catanzarite D M, Stclair K A. Commercial magneto-rheological fluid devices [J]. International Journal of Modern Physics B, 1996, 10(23): 2857-2865. DOI:10.1142/s0217979296001306.
[2] Dyke S J, Spencer B F, Sain M K, et al. Modeling and control of magnetorheological dampers for seismic response reduction [J]. Smart Materials and Structures, 1996, 5(5): 565-575. DOI:10.1088/0964-1726/5/5/006.
[3] Xu Z D, Shen Y P, Guo Y Q. Semi-active control of structures incorporated with magnetorheological dampers using neural networks [J]. Smart Materials and Structures, 2003, 12(1):80-87. DOI:10.1088/0964-1726/12/1/309.
[4] Xu Z D, Guo Y Q. Fuzzy control method for earthquake mitigation structures with magnetorheological dampers [J]. Journal of Intelligent Material Systems and Structures, 2006, 17(10):871-881. DOI:10.1177/1045389x06061044.
[5] Xu Z D, Xu F H, Chen X. Intelligent vibration isolation and mitigation of a platform by using MR and VE devices [J]. Journal of Aerospace Engineering, 2016, 29(4): 1-10. DOI:10.1061/(asce)as.1943-5525.0000604.
[6] Jung H J, Choi K M, Spencer B F, et al. Application of some semi-active control algorithms to a smart base-isolated building employing MR dampers [J]. Structural Control and Health Monitoring, 2006, 13(2/3): 693-704. DOI:10.1002/stc.106.
[7] Gordaninejad F, Kelso S P. Fail-safe magneto-rheological fluid dampers for off-highway, high-payload vehicles [J]. Journal of Intelligent Material Systems and Structures, 2000, 11(5): 395-406. DOI:10.1106/K90W-1A63-7QA7-6EH4.
[8] Zheng J J, Wang X J, Ouyang Q, et al. Modeling and characterization of novel magnetorheological(MR)cell with individual currents [J]. Journal of Central South University, 2015, 22(7): 2557-2567. DOI:10.1007/s11771-015-2785-2.
[9] Phillips R W. Engineering applications of fluids with a variable yield stress [D]. Berkeley: University of California, 1969.
[10] Wang X, Gordaninejad F. Flow analysis of field-controllable, electro-and magneto-rheological fluids using Herschel-Bulkley model [J]. Journal of Intelligent Material Systems and Structures, 1999, 10(8): 601-608. DOI:10.1106/p4fl-l1el-yflj-btre.
[11] Lee D Y, Wereley N M. Quasi-steady Herschel-Bulkley analysis of electroand magneto-rheological flow mode dampers [J]. Journal of Intelligent Material Systems and Structures, 1999, 10(10): 761-769. DOI:10.1106/e3lt-lyn6-kmt2-vjjd.
[12] Yang G Q, Spencer B F, Carlson J D, et al. Large-scale MR fluid dampers: Modeling and dynamic performance considerations [J]. Engineering Structures, 2002, 24(3): 309-323. DOI:10.1016/s0141-0296(01)00097-9.
[13] Spencer B F, Dyke S J, Sain M K, et al. Phenomenological model for magnetorheological dampers [J]. Journal of Engineering Mechanics, 1997, 123(3): 230-238. DOI:10.1061/(asce)0733-9399(1997)123:3(230).
[14] Wang E R, Ma X Q, Rakhela S, et al. Modelling the hysteretic characteristics of a magnetorheological fluid damper [J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2003, 217(7): 537-550. DOI:10.1243/095440703322114924.
[15] Kwok N M, Ha Q P, Nguyen T H, et al. A novel hysteretic model for magnetorheological fluid dampers and parameter identification using particle swarm optimization [J]. Sensors and Actuators A: Physical, 2006, 132(2): 441-451. DOI:10.1016/j.sna.2006.03.015.
[16] Zhou Q, Nielsen S R, Qu W L. Semi-active control of three-dimensional vibrations of an inclined sag cable with magnetorheological dampers [J]. Journal of Sound and Vibration, 2006, 296(1): 1-22. DOI:10.1016/j.jsv.2005.10.028.
[17] Xu Z D, Jia D H, Zhang X C. Performance tests and mathematical model considering magnetic saturation for magnetorheological damper [J]. Journal of Intelligent Material Systems and Structures, 2012, 23(12): 1331-1349. DOI:10.1177/1045389x12445629.
[18] Wang D H, Liao W H. Magnetorheological fluid dampers: A review of parametric modelling [J]. Smart Materials and Structures, 2011, 20(2): 023001. DOI:10.1088/0964-1726/20/2/023001.
[19] Yang G Q. Large-scale magnetorheological fluid damper for vibration mitigation: Modeling, testing and control [D]. Notre Dame: University of Notre Dame, 2001.
[20] Guo P F, Guan X C, Ou J P. Physical modeling and design method of the hysteretic behavior of magnetorheological dampers [J]. Journal of Intelligent Material Systems and Structures, 2013, 25(6): 680-696. DOI:10.1177/1045389X13500576.
[21] Jansen L M, Dyke S J. Semiactive control strategies for MR dampers: Comparative study [J]. Journal of Engineering Mechanics, 2000, 126(8): 795-803. DOI:10.1061/(asce)0733-9399(2000)126:8(795).
[22] Yi F, Dyke S J, Caicedo J M, et al. Experimental verification of multiinput seismic control strategies for smart dampers [J]. Journal of Engineering Mechanics, 2001, 127(11): 1152-1164. DOI:10.1061/(asce)0733-9399(2001)127:11(1152).
[23] Tan P, Dyke S J, Richardson A, et al. Integrated device placement and control design in civil structures using genetic algorithms [J]. Journal of Structural Engineering, 2005, 131(10): 1489-1496. DOI:10.1061/(asce)0733-9445(2005)131:10(1489).
[24] Dyke S J, Spencer B F, Quast P, et al. Role of control-structure interaction in protective system design [J]. Journal of Engineering Mechanics, 1995, 121(2): 322-338. DOI:10.1061/(asce)0733-9399(1995)121:2(322).
[25] Dyke S J, Spencer B F, Quast P, et al. Acceleration feedback control of MDOF structures [J]. Journal of Engineering Mechanics, 1996, 122(9): 907-918. DOI:10.1061/(asce)0733-9399(1996)122:9(907).