[1] Hui J Y, Sheng X L. Underwater sound channel [M]. 2nd Ed. Beijing: National Defense Industry Press, 2007: 121.(in Chinese)
[2] Zhu X, Zhao H F, Gong X Y. Detection of signals in reverberation noise [J]. Journal of Harbin Engineering University, 2004, 25(1): 34-37.(in Chinese)
[3] Kay S, Salisbury J. Improved active sonar detection using autoregressiveprewhiteness [J]. Journal of the Acoustical Society of America, 1990, 87(4):1603-1611. DOI:10.1121/1.399408.
[4] Song S J. Study on the method of target echo detection under reverberation background [D]. Harbin: College of Underwater Acoustic Engineering, Harbin Engineering University, 2008.(in Chinese)
[5] Sun W J. Studies on reverberation model and anti-reverberation signal processing for active sonar system [D]. Xi’an: College of Marine, Northwestern Polytechnical University, 2006.(in Chinese)
[6] Friedlander B, Zeira A. Detection of broadband signal in frequency and dispersive channel [J]. IEEE Transactions on Signal Processing, 1996, 44(7):1613-1622. DOI:10.1109/78.510610.
[7] Hermand J P, Roderick W I. Channel-adaptive matched filter processing of large time-bandwidth-product signal: Preliminary results [J]. Journal of the Acoustical Society of America, 1991, 89(4): 2001-2001. DOI:10.1121/1.2029845.
[8] Cai P, Liang G L, Ge F X, et al. Simulation research based on WVD-HT for anti-reverberation while detecting low doppler shift echo [J]. Journal of Harbin Engineering University, 2000, 21(3): 20-23.(in Chinese)
[9] Ge F X, Cai P, Hui J Y, et al. A new method for detecting the signal corrupted by the reverberation and estimation its parameters [J]. Acta Electronica Sinica, 2001, 29(3): 304-306.(in Chinese)
[10] Liu H B. The study of anti-reverberation technology [D]. Harbin: College of Underwater Acoustic Engineering, Harbin Engineering University, 2005.(in Chinese)
[11] Zhu G P. Study on technology for signal detection in the reverberation [D]. Harbin: College of Underwater Acoustic Engineering, Harbin Engineering University, 2009.(in Chinese)
[12] Flax L, Dragonette L R, Uberall H. Theory of elastic resonance excitation by sound scattering [J]. Journal of the Acoustical Society of America, 1978, 63(3): 723-731. DOI:10.1121/1.381780.
[13] Gaunaurd G C, Werby M F. Sound scattering by resonantly excited, fluid-loaded, elastic spherical shells [J]. Journal of the Acoustical Society of America, 1991, 90(5): 2536-2550. DOI:10.1121/1.402059.
[14] Brill D, Gaunaur C. Acoustic resonance scattering by a penetrable cylinder [J]. Journal of the Acoustical Society of America, 1983, 73(5): 1448-1455. DOI:10.1121/1.389432.
[15] Gaunaurd G, Brill D. Acoustic spectrogram and complex-frequency poles of a resonantly excited elastic tube [J]. Journal of the Acoustical Society of America, 1984, 75(6): 1680-1693. DOI:10.1121/1.389432.
[16] Tesei A, Fox W L J, Maguer A, et al. Target parameter estimation using resonance scattering analysis applied to air-filled, cylindrical shells in water [J]. Journal of the Acoustical Society of America, 2000, 108(6): 2891-2900. DOI:10.1121/1.1312359.
[17] Tang W L, Fan J. Mechanisms of sound scattering and radiation of submerged elastic structure-vibro-acoustic coupling of structure and water [J]. Acta Acustica, 2004, 29(5): 385-392.
[18] Pan A, Fan J, Zhuo L K. Acoustic scattering from a periodically bulkhead cylindrical shell [J]. Acta Physica Sinica, 2012, 62(2): 214301-1-214301-11.(in Chinese)
[19] Pan A, Fan J, Zhuo L K. Acoustic scattering from a finite quasi-periodic bulkhead cylindrical shell [J]. Acta Physica Sinica, 2013, 62(2): 024301-1- 024301-10.(in Chinese)
[20] Rajabi M, Seyyed M. Acoustic resonance scattering from a multilayered cylindrical shell with imperfect bonding [J]. Ultrasonics, 2009, 49: 682-695. DOI:10.1016/j.ultras.2009.05.007.
[21] Jones B A, Stanton T K, Lavery A C, et al. Classification of broadband echoes from prey of a foraging Blainville’s beaked whale [J]. Journal of the Acoustical Society of America, 2008, 123(3): 1753-1762. DOI:10.1121/1.2828210.
[22] Branstetter B K, Mercado Ⅲ E, Au W L. Representing multiple discrimination cues in a computational model of the bottlenose dolphin auditory system [J]. Journal of the Acoustical Society of America, 2007, 122(4): 2459-2468. DOI:10.1121/1.2772214.
[23] Pailhas Y, Capus C, Brown K. Analysis and classification of broadband echoes using bio-inspired dolphin pulses [J]. Journal of the Acoustical Society of America, 2010, 127(6): 3809-3820. DOI:10.1121/1.3372754.
[24] Genzel D, Wiegrebe L. Time-variant spectral peak and notch detection in echolocation-call sequences in bats [J]. The Journal of Experimental Biology, 2008, 211: 9-14. DOI:10.1242/jeb.012823.
[25] Nell C W, Gilroy L E. An improved BASIS model for the BeTSSi submarine [R]. DRDC Atlantic TR, 2003.
[26] Wu J R, Peng D Y, Zhang J L. The characteristics of ocean reverberation [J]. Physics, 2014, 43(11): 732-739.
[27] Liu B S, Lei J Y. Principles of underwater sound [M]. 2nd Ed. Harbin: Harbin Engineering University Press, 2010:190.(in Chinese)
[28] Tang W L. Highlight model of echoes from sonar targets [J]. Acta Acustica, 1994, 19(2): 92-99.(in Chinese)
[29] Chen K A. The sensing and auto classification of environmental sound [M]. Beijing: Science Press, 2014:199.(in Chinese)
[30] Fan J, Zhu B L, Tang W L. Modified geometrical highlight model of echoes from non-rigid surface sonar target [J]. Acta Acustica, 2001, 26(6): 545-550.(in Chinese)
[31] Fan J, Li J L, Liu T. Transition characteristics of echoes from complex shape targets in water [J]. Journal of Shanghai Jiaotong University, 2002, 36(2): 161-164.(in Chinese)
[32] Fan J, Tang W L, Zhuo L K. Planar elements method for forecasting the echo characteristics from sonar targets [J]. Journal of Ship Mechanics, 2012, 16(1/2): 171-180.(in Chinese)