|Table of Contents|

[1] Chen Yunfei, Li Sheng, Jia Bing, et al. Broadband underwater target echo detectionbased on signal spectral irregularity feature [J]. Journal of Southeast University (English Edition), 2018, 34 (2): 147-155. [doi:10.3969/j.issn.1003-7985.2018.02.002]
Copy

Broadband underwater target echo detectionbased on signal spectral irregularity feature()
基于谱不规律性特征的水中目标宽带回波检测
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
34
Issue:
2018 2
Page:
147-155
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2018-06-20

Info

Title:
Broadband underwater target echo detectionbased on signal spectral irregularity feature
基于谱不规律性特征的水中目标宽带回波检测
Author(s):
Chen Yunfei1 2 Li Sheng1 Jia Bing2 Wang Zhenshan2 Li Guijuan2
1 School of Naval Architecture, Dalian University of Technology, Dalian 116024, China
2 Science and Technology on Underwater Test and Control Laboratory, Dalian 116013, China
-
1大连理工大学船舶工程学院, 大连 116024, 中国; 2水下测控技术重点实验室, 大连 116013, 中国
Keywords:
echo reverberation signal spectral irregularity
回波 混响 信号谱不规律性
PACS:
TB566
DOI:
10.3969/j.issn.1003-7985.2018.02.002
Abstract:
For the detection of underwater target echo under strong interferences, the modulation feature of direct echo signal and reverberation spectrum are characterized by the signal spectral irregularity feature, and the relationship between signal spectral irregularity and target physical properties is theoretically formed. A novel method of broadband underwater target echo detection under reverberation based on the signal spectral irregularity characteristics is proposed. The proposed method has the capability of discriminating between the direct target echo signal from reverberation. Simulation results of complex underwater target broadband acoustic scattering show that the echo can be detected even with the signal to reverberation ratio(SRR)below -10 dB by the proposed method based on the spectral irregularity(SI)feature. The corresponding sea experimental results also show that echo can be detected when the SRR is below 0 dB. The effectiveness and correctness of the proposed method are verified both in simulated data and in real data in sea experiment.
针对强混响干扰背景下的水中目标回波分辨问题, 研究了水中宽带回波频谱的起伏特性, 并采用谱不规律性对宽带回波信号的频谱起伏进行表征, 建立了水中目标回波频谱不规律性特征与目标属性参数之间的关联关系.基于回波与混响的谱不规律性特征提出了一种混响背景下水中目标宽带回波检测方法, 该方法能够对混响与目标回波进行分辨.复杂目标的理论仿真结果表明, 在信混比低至-10 dB时, 基于谱不规律性特征, 仍然可以分辨回波和混响, 复杂目标海试数据测试结果表明信混比低于0 dB时, 混响背景下回波可以有效检测, 理论和试验测试结果验证了该方法对混响背景下宽带回波检测的有效性.

References:

[1] Hui J Y, Sheng X L. Underwater sound channel [M]. 2nd Ed. Beijing: National Defense Industry Press, 2007: 121.(in Chinese)
[2] Zhu X, Zhao H F, Gong X Y. Detection of signals in reverberation noise [J]. Journal of Harbin Engineering University, 2004, 25(1): 34-37.(in Chinese)
[3] Kay S, Salisbury J. Improved active sonar detection using autoregressiveprewhiteness [J]. Journal of the Acoustical Society of America, 1990, 87(4):1603-1611. DOI:10.1121/1.399408.
[4] Song S J. Study on the method of target echo detection under reverberation background [D]. Harbin: College of Underwater Acoustic Engineering, Harbin Engineering University, 2008.(in Chinese)
[5] Sun W J. Studies on reverberation model and anti-reverberation signal processing for active sonar system [D]. Xi’an: College of Marine, Northwestern Polytechnical University, 2006.(in Chinese)
[6] Friedlander B, Zeira A. Detection of broadband signal in frequency and dispersive channel [J]. IEEE Transactions on Signal Processing, 1996, 44(7):1613-1622. DOI:10.1109/78.510610.
[7] Hermand J P, Roderick W I. Channel-adaptive matched filter processing of large time-bandwidth-product signal: Preliminary results [J]. Journal of the Acoustical Society of America, 1991, 89(4): 2001-2001. DOI:10.1121/1.2029845.
[8] Cai P, Liang G L, Ge F X, et al. Simulation research based on WVD-HT for anti-reverberation while detecting low doppler shift echo [J]. Journal of Harbin Engineering University, 2000, 21(3): 20-23.(in Chinese)
[9] Ge F X, Cai P, Hui J Y, et al. A new method for detecting the signal corrupted by the reverberation and estimation its parameters [J]. Acta Electronica Sinica, 2001, 29(3): 304-306.(in Chinese)
[10] Liu H B. The study of anti-reverberation technology [D]. Harbin: College of Underwater Acoustic Engineering, Harbin Engineering University, 2005.(in Chinese)
[11] Zhu G P. Study on technology for signal detection in the reverberation [D]. Harbin: College of Underwater Acoustic Engineering, Harbin Engineering University, 2009.(in Chinese)
[12] Flax L, Dragonette L R, Uberall H. Theory of elastic resonance excitation by sound scattering [J]. Journal of the Acoustical Society of America, 1978, 63(3): 723-731. DOI:10.1121/1.381780.
[13] Gaunaurd G C, Werby M F. Sound scattering by resonantly excited, fluid-loaded, elastic spherical shells [J]. Journal of the Acoustical Society of America, 1991, 90(5): 2536-2550. DOI:10.1121/1.402059.
[14] Brill D, Gaunaur C. Acoustic resonance scattering by a penetrable cylinder [J]. Journal of the Acoustical Society of America, 1983, 73(5): 1448-1455. DOI:10.1121/1.389432.
[15] Gaunaurd G, Brill D. Acoustic spectrogram and complex-frequency poles of a resonantly excited elastic tube [J]. Journal of the Acoustical Society of America, 1984, 75(6): 1680-1693. DOI:10.1121/1.389432.
[16] Tesei A, Fox W L J, Maguer A, et al. Target parameter estimation using resonance scattering analysis applied to air-filled, cylindrical shells in water [J]. Journal of the Acoustical Society of America, 2000, 108(6): 2891-2900. DOI:10.1121/1.1312359.
[17] Tang W L, Fan J. Mechanisms of sound scattering and radiation of submerged elastic structure-vibro-acoustic coupling of structure and water [J]. Acta Acustica, 2004, 29(5): 385-392.
[18] Pan A, Fan J, Zhuo L K. Acoustic scattering from a periodically bulkhead cylindrical shell [J]. Acta Physica Sinica, 2012, 62(2): 214301-1-214301-11.(in Chinese)
[19] Pan A, Fan J, Zhuo L K. Acoustic scattering from a finite quasi-periodic bulkhead cylindrical shell [J]. Acta Physica Sinica, 2013, 62(2): 024301-1- 024301-10.(in Chinese)
[20] Rajabi M, Seyyed M. Acoustic resonance scattering from a multilayered cylindrical shell with imperfect bonding [J]. Ultrasonics, 2009, 49: 682-695. DOI:10.1016/j.ultras.2009.05.007.
[21] Jones B A, Stanton T K, Lavery A C, et al. Classification of broadband echoes from prey of a foraging Blainville’s beaked whale [J]. Journal of the Acoustical Society of America, 2008, 123(3): 1753-1762. DOI:10.1121/1.2828210.
[22] Branstetter B K, Mercado Ⅲ E, Au W L. Representing multiple discrimination cues in a computational model of the bottlenose dolphin auditory system [J]. Journal of the Acoustical Society of America, 2007, 122(4): 2459-2468. DOI:10.1121/1.2772214.
[23] Pailhas Y, Capus C, Brown K. Analysis and classification of broadband echoes using bio-inspired dolphin pulses [J]. Journal of the Acoustical Society of America, 2010, 127(6): 3809-3820. DOI:10.1121/1.3372754.
[24] Genzel D, Wiegrebe L. Time-variant spectral peak and notch detection in echolocation-call sequences in bats [J]. The Journal of Experimental Biology, 2008, 211: 9-14. DOI:10.1242/jeb.012823.
[25] Nell C W, Gilroy L E. An improved BASIS model for the BeTSSi submarine [R]. DRDC Atlantic TR, 2003.
[26] Wu J R, Peng D Y, Zhang J L. The characteristics of ocean reverberation [J]. Physics, 2014, 43(11): 732-739.
[27] Liu B S, Lei J Y. Principles of underwater sound [M]. 2nd Ed. Harbin: Harbin Engineering University Press, 2010:190.(in Chinese)
[28] Tang W L. Highlight model of echoes from sonar targets [J]. Acta Acustica, 1994, 19(2): 92-99.(in Chinese)
[29] Chen K A. The sensing and auto classification of environmental sound [M]. Beijing: Science Press, 2014:199.(in Chinese)
[30] Fan J, Zhu B L, Tang W L. Modified geometrical highlight model of echoes from non-rigid surface sonar target [J]. Acta Acustica, 2001, 26(6): 545-550.(in Chinese)
[31] Fan J, Li J L, Liu T. Transition characteristics of echoes from complex shape targets in water [J]. Journal of Shanghai Jiaotong University, 2002, 36(2): 161-164.(in Chinese)
[32] Fan J, Tang W L, Zhuo L K. Planar elements method for forecasting the echo characteristics from sonar targets [J]. Journal of Ship Mechanics, 2012, 16(1/2): 171-180.(in Chinese)

Memo

Memo:
Biographies: Chen Yunfei(1978—), male, Ph.D. candidate; Li Sheng(corresponding author), male, doctor, professor, shengli@dlut.edu.cn.
Foundation item: The 13th Five-Year Plan for Advanced Research Program(No.41416030301).
Citation: Chen Yunfei, Li Sheng, Jia Bing, et al.Broadband underwater target echo detection based on signal spectral irregularity feature[J].Journal of Southeast University(English Edition), 2018, 34(2):147-155.DOI:10.3969/j.issn.1003-7985.2018.02.002.
Last Update: 2018-06-20