|Table of Contents|

[1] Wang Xinyu, Zhang Jingyao, Cai Jianguo, Feng Jian, et al. Force-finding analysis of cable-net deployable antennaconsidering shape constraints [J]. Journal of Southeast University (English Edition), 2018, 34 (2): 213-219. [doi:10.3969/j.issn.1003-7985.2018.02.011]
Copy

Force-finding analysis of cable-net deployable antennaconsidering shape constraints()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
34
Issue:
2018 2
Page:
213-219
Research Field:
Computer Science and Engineering
Publishing date:
2018-06-20

Info

Title:
Force-finding analysis of cable-net deployable antennaconsidering shape constraints
Author(s):
Wang Xinyu1 Zhang Jingyao2 Cai Jianguo1 Feng Jian1
1School of Civil Engineering, Southeast University, Nanjing 210096, China
2Graduate School of Architecture and Design, Nagoya City University, Nagoya 467-8601, Japan
Keywords:
AstroMesh force-finding shape constraint optimization surface accuracy
PACS:
TP359
DOI:
10.3969/j.issn.1003-7985.2018.02.011
Abstract:
The force-finding process of the cable-net in the deployable mesh reflector antenna, AstroMesh, is investigated to optimize the pretension distribution and satisfy surface accuracy. Since the geometry and topology of the mesh reflector antennas are given as a constraint with the boundary condition assumed to be fixed, the force-finding process can be performed on a constant equilibrium matrix to obtain a feasible set of forces. Then, the equilibrium matrix can be rewritten in terms of force modes after the singular value decomposition. The object of force design is to minimize the deviation of member forces and, therefore, the surface accuracy can be guaranteed by transforming an optimization of the distribution of prestresses into an optimization with multiple prestress modes. Finally, numerical examples solved by the sequential quadratic programming(SQP)algorithm and the genetic algorithm are given to validate the efficiency of the proposed method. The comparison results show that the genetic method can converge to the optimized point after approximately 50 iterations while the converging process of the sequential quadratic programming method depends largely on the initial points.

References:

[1] Tibert A G, Pellegrino S. Deployable tensegrity reflectors for small satellites [J]. Journal of Spacecraft and Rockets, 2002, 39(5): 701-709. DOI:10.2514/2.3867.
[2] Thomson M W. The AstroMesh deployable reflector[C]//Fifth International Mobile Satellite Conference(IMSC’97). Orlando, FL, USA, 1997: 393-398.
[3] Thomson M W. AstroMeshTM deployable reflectors for Ku and Ka band commercial satellites [C]//20th AIAA International Communication Satellite Systems Conference and Exhibit. Montreal, Quebec, Canada, 2002. DOI:10.2514/6.2002-2032.
[4] Liu W, Li D X, Yu X Z, et al. Exact mesh shape design of large cable-network antenna reflectors with flexible ring truss supports [J]. Acta Mechanica Sinica, 2014, 30(2): 198-205. DOI:10.1007/s10409-014-0029-6.
[5] Liu C, Shi Y. Comprehensive structural analysis and optimization of the electrostatic forming membrane reflector deployable antenna [J]. Aerospace Science and Technology, 2016, 53: 267-279. DOI:10.1016/j.ast.2016.03.026.
[6] Meguro A, Tsujihata A, Hamamoto N, et al. Technology status of the 13 m aperture deployment antenna reflectors for Engineering Test Satellite Ⅷ[J]. Acta Astronautica, 2000, 47(2): 147-152. DOI:10.1016/s0094-5765(00)00054-0.
[7] Meguro A, Shintate K, Usui M, et al. In-orbit deployment characteristics of large deployable antenna reflector on board Engineering Test Satellite Ⅷ[J]. Acta Astronautica, 2009, 65(9): 1306-1316. DOI:10.1016/j.actaastro.2009.03.052.
[8] Eastwood I, Thomson M, Fang H F.Prospects of large deployable reflector antennas for a new generation of geostationary Doppler radar satellites[C]//Proceedings of AIAA Space 2007 Conference and Exposition. Long Beach, CA, USA, 2007: 1-11. DOI:10.2514/6.2007-9917.
[9] Fan Y, Li T, Ma X.An analytic algorithm for pretension design of asymmetrical ring truss cable-net antennas [J]. Journal of Harbin Institute of Technology, 2015, 47(1): 124-128.
[10] Li P, Liu C, Tian Q, et al. Dynamics of a deployable mesh reflector of satellite antenna: Parallel computation and deployment simulation [J]. Journal of Computational and Nonlinear Dynamics, 2016, 11(6):061005. DOI:10.1115/1.4033657.
[11] Lewis W J.Tension structures: Form and behaviour [M]. Thomas Telford, 2003.
[12] Linkwitz K, Schek H J. Einige bemerkungen zur berechnung von vorgespannten seilnetzkonstruktionen [J]. Archive of Applied Mechanics, 1971, 40(3): 145-158. DOI:10.1007/bf00532146.
[13] Schek H J. The force density method for form finding and computation of general networks[J]. Computer Methods in Applied Mechanics and Engineering, 1974, 3(1): 115-134. DOI:10.1016/0045-7825(74)90045-0.
[14] Day A S, Bunce J. The analysis of hanging roofs [J]. Arup Journal, 1969, 9: 30-31.
[15] Barnes M R. Form-finding and analysis of prestressed nets and membranes [J]. Computers and Structures, 1988, 30(3): 685-695. DOI:10.1016/0045-7949(88)90304-5.
[16] Zhang J Y.Structural morphology and stability of tensegrity structures [D].Kyoto: Department of Architecture, Kyoto University, 2007.
[17] Yang B, Shi H, Thomson M, et al. Optimal design of initial surface profile of deployable mesh reflectors via static modeling and quadratic programming[C]//The 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Palm Springs, CA, USA, 2009. DOI:10.2514/6.2009-2173.
[18] Li G, Guan F. Optimization of pretension in net of AstroMesh deployable reflector and engineering application [J]. Acta Mechanica Solida Sinica, 2006, 27(12): 174-179.
[19] Niu Z, Wang S, Wang L. Multiobjective optimization of the pretensioning force in the tri-directional cable net of an AstroMesh deployable reflector [J]. Mechanical Science and Technology for Aerospace Engineering, 2009, 39(3): 2541-2569.
[20] Li T J, Jiang J, Deng H Q. Form-finding methods for deployable mesh reflector antennas[J]. Chinese Journal of Aeronautics, 2013, 26(5): 1276-1282.
[21] Tanaka H, Natori M C. Shape control of space antennas consisting of cable network [J]. Acta Mechanica Sinica, 2004, 55(3): 519-527.
[22] Zhang J Y, Ohsaki M. Tensegrity structures: Form, Stability and System [M]. Springer, 2015.

Memo

Memo:
Biographies: Wang Xinyu(1993—), female, Ph.D.candidate; Cai Jianguo(corresponding author), male, doctor, professor, j.cai@seu.edu.cn.
Foundation items: The National Natural Science Foundation of China(No.51308106, 51578133), the Natural Science Foundation of Jiangsu Province(No.BK20130614), the Specialized Research Fund for the Doctoral Program of Higher Education(No.20130092120018), the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, the Excellent Young Teachers Program of Southeast University, the Postgraduate Research & Practice Innovation Program of Jiangsu Province(No.KYCX18_0105).
Citation: Wang Xinyu, Zhang Jingyao, Cai Jianguo, et al. Force-finding analysis of cable-net deployable antenna considering shape constraints[J].Journal of Southeast University(English Edition), 2018, 34(2):213-219.DOI:10.3969/j.issn.1003-7985.2018.02.011.
Last Update: 2018-06-20